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ABSTRACT

Byzantine fault tolerant systems behave correctly
when no more thanf out of 3f + 1 replicas fail. When
there are more thanf failures, traditional BFT proto-
cols make no guarantees whatsoever. Malicious replicas
can make clients accept arbitrary results, and the sys-
tem behavior is totally unspecified. However, there is a
large spectrum between complete correctness and arbi-
trary failure that traditional BFT systems ignore. This
paper argues that we can and should bound the system
behavior beyondf failures.

We present BFT2F, an extension to the well-known
Castro-Liskov PBFT algorithm [6], to explore the de-
sign space beyondf failures. Specifically, BFT2F has
the same liveness and consistency guarantees as PBFT
when no more thanf replicas fail; with more thanf
but no more than2f failures, BFT2F prohibits mali-
cious servers from making up operations that clients
have never issued and restricts malicious servers to only
certain kinds of consistency violations. Evaluations of a
prototype implementation show that the additional guar-
antees of BFT2F come at the cost of only a slight perfor-
mance degradation compared to PBFT.

1 INTRODUCTION

Applications with high security needs can reduce
the danger of attacks through Byzantine-fault-tolerant
(BFT) replication. A service replicated over several BFT
servers can survive even when some fraction of the repli-
cas fail (become malicious). Thus, failures whose like-
lihood is not correlated across machines have a much
smaller probability of affecting overall application secu-
rity. In particular, if replicas are separately administered,
BFT replication protects against malicious or incompe-
tent machine operators. To a limited extent, BFT replica-
tion also protects against software errors in components
with different implementations on different machines.

BFT protocols generally aspire to two properties [6]:
linearizability [9] and liveness. Linearizability, also
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called ideal consistencyor safety, is the property that
the service appears to all clients to execute an identical
sequence of requests, and that this sequence preserves
the temporal order of non-concurrent operations. Live-
ness means that the system makes progress in executing
clients’ requests, at least under some weak assumptions
about eventual message delivery.

Unfortunately, all BFT protocols make a strong as-
sumption that some predetermined fraction of server
replicas are honest. In particular, the highest fraction
of failures that an asynchronous BFT system can sur-
vive without jeopardizing linearizability or liveness isf
out of 3f + 1 replicas. The reason is that asynchronous
communication makes it impossible to differentiate slow
replicas from failed ones. To progress safely withf un-
responsive replicas, a majority of the remaining2f + 1
responsive ones must be honest.

The security of today’s best-known BFT algorithms
fails completely given even justf + 1 compromised
replicas. For example, an attacker who compromises two
out of four servers can return arbitrary results to any re-
quest by any client, including inventing past operations
that were never requested by any user, rolling back his-
tory to undo operations that were already revealed to
clients, or producing illegal results that could not have
arisen from any valid sequence of operations. However,
depending on the situation, it may be harder for an at-
tacker to compromise two thirds of replicas than one
third. A system that guarantees some residual security
properties when a third or more of the replicas fail could
significantly improve security in such settings.

Fortunately, linearizability and total failure are not
the only options. The goal of this work is to limit the
damage when more thanf out of 3f + 1 servers in
a replicated state system fail. Specifically, we explore
a new, weaker consistency model, fork* consistency, a
derivative of fork consistency introduced earlier [16].
With fork* consistency, it is possible to bound a system’s
behavior when betweenf+1 and2f replicas have failed.
When2f +1 or more replicas fail, it is unfortunately not
possible to make any guarantees without simultaneously
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Figure 1: Comparison of the safety and liveness guaran-
tees of PBFT, BFT2F, and BFTx. As we can see, BFT2F
provides extra safety guarantees without compromising
liveness, which is strictly better than PBFT.

sacrificing liveness for cases wheref or fewer replicas
fail.

We propose BFT2F, a protocol that provides exactly
the same linearizability guarantee as PBFT [6] when up
to f replicas have failed. When more thanf but no more
than2f replicas have failed, two outcomes are possible.
(1) The system may cease to make progress—In other
words, BFT2F does not guarantee liveness when more
thanf replicas are compromised. Fortunately, for most
applications, denial of service is less harmful than arbi-
trary behavior. (2) The system may continue to operate
and offer fork* consistency, which again for many appli-
cations is preferable to arbitrary behavior.

Fork* consistency is perhaps best motivated by ex-
ample. Consider a campus on which people swipe ID
cards to open locked doors. Suppose the server that pro-
cesses access requests is replicated on four machines.
With PBFT, an attacker who compromises two replicas
can open any door on campus—even doors he has never
had access to—without leaving an audit trail. With fork*
consistency, the attacker might be able to delay revo-
cation requests and gain access to rooms he should no
longer have access to. He may also complicate recovery
by causing his accesses to be logged on only one correct
replica instead of all correct replicas. However, he will
not gain access to new rooms or be able to unlock doors
without leaving some evidence behind.

In practice, surviving up to2f malicious replicas en-
ables replicated state systems for the first time to han-
dle the case where amajority of the replicas may fail.
Meanwhile, BFT2F does not compromise any guaran-
tees that existing BFT systems provide. One might won-
der if there exist protocols that guarantee fork* consis-
tency with even larger numbers of failures, e.g.,x fail-
ures for2f < x ≤ 3f . The answer is yes. In fact, BFT2F
can be easily parameterized to support that, which we

term BFTx in Figure 1. However, achieving fork* con-
sistency with more than2f failures comes at the cost
of sacrificing liveness when there are fewer thanf fail-
ures. Administrators who care more about security than
availability can tune the protocol to guarantee fork* con-
sistency anywhere up to3f failures. In fact, through a
degenerate case, a system configured to guarantee fork*
consistency with as few as one correct replica actually
provides linearizability, at the cost of sacrificing liveness
in the face of even one failure.

The paper is organized as follows. We start by spec-
ifying the details of the system model and our assump-
tions in Section 2. Section 3 gives a formal specifica-
tion of fork consistency and proves that no protocols
can guarantee fork consistency using only one round of
communication when more thanf servers fail. In Sec-
tion 4, we relax the model of fork consistency further to
arrive at fork* consistency, which is achievable using a
one round protocol and still provides useful guarantees.
We present BFT2F, an extension to the classical PBFT
protocol to achieve fork* consistency when more thanf

servers are faulty in Section 5. We evaluate a prototype
implementation of BFT2F in Section 6. Lastly, we dis-
cuss related work in Section 7 and conclude in Section 8.

2 MODELS AND ASSUMPTIONS

We use the same replicated state machine model as
presented in past work [6, 24]. The network is unreliable
and may replicate, discard, and reorder messages with
the one exception that it cannot indefinitely prevent two
honest parties from communicating with each other.

The system consists of a number of clients and3f+1
replicated servers, wheref is a predetermined parame-
ter. Clients make requests for operations to servers. An
operation isexecutedwhen servers accept it and apply it
to their state. An operation iscompletedwhen its origi-
nating client accepts the reply. We use lower-case letters
that appear early in the alphabet such asa, b, c to de-
note clients, and letters that appear late in the alphabet
such asp, q, u, w to denote servers. We also use the term
replicas and servers interchangeably. A node is either a
client or server. Each node has a public/private key pair.
Each server knows the public keys of all nodes and each
client knows the public keys of all servers.

We assume a Byzantine failure model. A faulty node
may either halt or deviate from correct behavior arbi-
trarily, even colluding with other faulty nodes. However,
a faulty node cannot forge digital signatures of correct
nodes or find collisions of a cryptographic hash func-
tion.
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3 FORK CONSISTENCY

Figure 2 shows the server-side interface between a
state-machine replication system (such as PBFT) and
the replicated service (e.g., an NFS file server). The
service starts in a fully-specified initial state and pro-
vides a single function, EXECUTE, that takes a request
operation,op, as an argument, then deterministically
updates its state and returns a result,res. In ordinary
operation, clients submit requests through a client-side
replication library. The server-side code communicates
amongst replicas so as to invoke EXECUTE with an iden-
tical sequence of requests on every replica, thereby pro-
ducing identical results to send back to the client. The
client side library returns the results from the matching
replies to the client.

Of course, a compromised server need not behave
as described above. It can fail to respond to messages.
Worse yet, it may return arbitrary results to clients;
it may subvert network routing to intercept and tam-
per with packets; it may even collude with other com-
promised servers and send carefully-crafted messages
that subvert honest replicas and ultimately convince the
client library to return incorrect or inconsistent results.
We need techniques that allow honest clients and repli-
cas to minimize the damage that may be caused by ma-
licious replicas.

A significant part of the challenge is ensuring that
malicious replicas do not corrupt the internal state of
honest replicas. Because an honest replica’s internal
state is entirely determined by the sequence of all oper-
ations it has ever executed, we introduce a term for this
history: We call the sequenceLall = 〈op1, op2, ..., opn〉
of all operations executed by a replica theresult list of
its latest operationopn. This result list entirely deter-
mines both the result returned by the EXECUTE function
for opn and the stateSn+1 of the replica after execut-
ing opn. Whenever possible, we would like to ensure
that honest replicas all have the same result lists and that
these lists contain only requests legitimately issued by
users.

To defend against illegitimate requests, each opera-
tion may be signed by the key of its originating user.
Without knowing a user’s private key, a bad replica can-
not forge requests. By verifying the signatures on re-
quests, honest replicas can limit themselves to calling
EXECUTE only on operations legitimately requested by
users. Should malicious replicas learn a compromised
user’s private key, they may be able to convince hon-
est replicas to execute arbitrary operations with the priv-
ileges of the compromised user; effectively any well-
formed operation by a compromised user is legitimate.

In an ideally consistent (well-behaved) system, ev-

// At server side:
(Sn+1, res)← EXECUTE(Sn, op);

Figure 2: Pseudocode for replicated state machines.

ery honest replica will have the same result listLall =
〈op1, op2, ..., opn〉 for operationopn. Moreover, this list
will preserve the temporal order of non-overlapping op-
erations. Malicious replicas, of course, may behave as
thoughopn’s result isnot the outcome of executingLall,
but rather of some different result listLbad . In fact, ma-
licious server behavior may be incompatible withany
possible sequence of legitimate requests; we therefore
allow Lbad to contain illegal operations (such as “cause
the next operation to return this particular result”).

When a system undergoes total failure (as in the case
of PBFT with more thanf faulty replicas), an oper-
ation’s result list even at an honest replica might not
contain all previously issued requests; malicious servers
may have succeeded in concealing the existence of legit-
imately issued operations. Worse yet, it may be that dif-
ferent replica’s result lists contain the same operations
in different orders, and that this convinces the client li-
braries on different machines to return inconsistent re-
sults. To mitigate these problems, we previously defined
a consistency model, fork consistency [16], that can be
realized in the presence of entirely malicious servers. An
important property of fork consistency is that it helps
provide server accountability by allowing clients to de-
tect any past consistency violations on the part of bad
servers.

In defining fork consistency, we make a distinc-
tion between operations issued bycorrectclients, which
obey the protocol, andmaliciousor compromised clients
that don’t. We use the term result lists only for replies to
operations issued by correct clients running our library,
as it makes little sense to talk about the results seen by
clients that do not implement the protocol or even neces-
sarily use our software. However, we consider any result
accepted by a correct client to have a result list. In the
event that malicious servers completely break the sys-
tem, they may induce clients to accept “impossible” re-
sults, in which case the corresponding result lists must
have illegal operations.

Definition: A system isfork consistentif and only if it
satisfies the following requirements:

• Legitimate-request Property: Every result ac-
cepted by a correct client has a result listL that
contains only well-formed operations legitimately
issued by clients.

• Self-consistency Property:Each honest client sees
all past operations from itself: if the same clienta
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issues an operationopi beforeopj , thenopi also
appears inopj ’s result list.

This property ensures that a client has a consistent
view with respect to its own operations. For exam-
ple, in a file system, a client always reads the effect
of its own writes.

• No-join Property: Every accepted result list that
contains an operationop by an honest client is iden-
tical up toop.

One corollary of fork consistency is that when two
clients see each others’ recent operations, they have also
seenall of each other’s past operations in the same order.
This makes it possible to audit the system; if we can col-
lect all clients’ current knowledge and check that all can
see each others’ latest operations, we can be sure that the
system hasneverin the past violated ideal consistency.
Another corollary is that every result list preserves the
temporal order of non-concurrent operations by correct
clients, since an accepted result list cannot contain oper-
ations that have not yet been issued.

We say two result lists areconsistentif one is an im-
proper prefix of the other. We say two result lists are
forked if they are not consistent. For instance, result list
〈op1, op2〉 and result list〈op1, op3〉 are forked, while
〈op1, op2〉 and〈op1, op2, op3〉 are not. If clients accept
forked result lists, the system has failed to deliver ideal
consistency.

We say servers are in differentfork setsif they reflect
forked result lists. A fork set consists of a set of servers
who return the same set of consistent result lists to all
clients, though in an asynchronous system, some results
may not reach the client before an operation completes.
Intuitively, a correct server cannot be in more than one
fork set. A malicious server, however, can simultane-
ously be in multiple fork sets—pretending to be in dif-
ferent system states when talking to different nodes. An
attacker who controls the network and enough replicas
may cause the remaining honest replicas to enter dif-
ferent forks sets from one another, at which point with
any practical protocol clients can no longer be assured
of ideal consistency.1

Figure 3 shows an example where fork consistency
differs from ideal consistency. Initially, all clients have
the same result list〈op1〉. Clienta issues a requestop2,
and gets back the result list〈op1, op2〉 from fork set

1Technically, a contrived protocol could permit honest replicas to
enter forked states that clients could always detect. However, such a
protocol would be needlessly vulnerable; since honest replicas know
the system’s complete state, they can and should detect any attacks
clients can, rather than purposefully entering divergent states that
would be more difficult to recover from.

〈op 1
, op 3
〉.

c:op1
a:op

2

fork branchα

b:op 3

system state is forked

result list for clienta:

〈op
1 , op

2 〉.

fork branchβ

result list for clientb:

Figure 3: An example of fork consistency. Since the
server deceives clientb abouta’s operationop2, client
a’s result list 〈op1, op2〉, and b’s result list 〈op1, op3〉
are only fork consistent, not ideally consistent. (Strictly
speaking, clienta still has ideal consistency at this mo-
ment, shouldop2 be ordered beforeop3. However, client
a will miss ideal consistency hereafter.)
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Figure 4: In a replicated state system, the intersection
of two fork sets can only consist ofprovably malicious
servers, which are denoted by shaded circles. The parti-
tion that excludes the intersection part might have honest
servers and malicious ones that have not yet misbehaved.

FSα; after that, clientb’s operationop3 returns with the
result list〈op1, op3〉 from fork setFSβ . Here the server
deceivesb abouta’s completed operationop2. Therefore,
clienta’s result list and clientb’s are forked. At this mo-
ment, one can verify that the system has delivered fork
consistency, but failed to provide ideal consistency. It is
worth pointing out that if a protocol returned the entire
result list with each reply to an operation, a client could
compare result lists to detect the attack whenever it re-
ceived replies from two different fork sets. The BFT2F
protocol presented in Section 5 uses hashes to achieve a
similar guarantee without the efficiency or privacy prob-
lems of shipping around result lists.

Figure 4 shows a potential configuration that could
produce the two fork sets in Figure 3.FSα

⋂
FSβ must
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haveonly faulty servers that have already acted mali-
ciously (e.g.,p, q, o). FSα− (FSα

⋂
FSβ) andFSβ −

(FSα

⋂
FSβ) can include either honest servers (e.g.,u,

w, t), or malicious servers who have not misbehaved so
far (e.g.,r could be such a server), and so who are exter-
nally indistinguishable from honest servers, though they
might later deviate from the protocol.

3.1 Fork consistency examples

For some applications, fork consistency may be
nearly as good as ideal consistency. In the example of a
card-swipe access control service, if two out four repli-
cas are compromised and an attacker forks the system
state, it is likely only a matter of hours or days be-
fore people notice something is wrong—for instance that
new users’ cards do not work on all doors. At that point,
the administrators must repair the compromised repli-
cas. In addition, they may need to merge access logs and
replay all revocations executed in either fork set by the
two honest replicas. Even without server compromises,
adding and removing door access is often not instanta-
neous anyway, both because of bureaucracy and because
people do not always report lost or stolen ID cards im-
mediately.

On the other hand, in other settings fork consistency
may lead to quantifiable damage compared to ideal con-
sistency. Consider a bank that uses four machines to
replicate the service that maintains account balances.
An attacker who compromises two of the machines and
forks the state can effectively duplicate his account bal-
ance. If the attacker has $1,000 in his account, he can go
to one branch and withdraw $1,000, then go to a branch
in a different fork set and withdraw $1,000 again.

Finally, of course, there are settings in which fork
consistency on its own is nearly useless. For example,
a rail signaling service split into two fork sets, each of
which monitors only half the trains and controls half the
signals, could easily cause a catastrophic collision. One
way to mitigate such problems is to leverage fork consis-
tency to get bounded inconsistency through heartbeats.
A trusted heartbeat client could increment a counter ev-
ery few seconds; trains that do not detect the counter
being incremented could sound an alarm. The attacker
would then need to compromise either anotherf repli-
cas or the heartbeat box to suppress the alarms.

3.2 Impossibility of one-round fork consis-
tency

Unfortunately, for a system to guarantee fork
consistency when the fraction of honest replicas is too
small for linearizability, clients must send at least two
messages for every operation they perform. The most

serious implication of this is that the system can no
longer survive client failures—if a client fails between
the first and second messages of an operation, the sys-
tem may no longer be able to make progress. Another
disadvantage is that slow clients can severely limit
system throughput by leaving servers idle between the
two messages. Finally, there are various implementation
reasons why a one-round protocol is often simpler
and more efficient, particularly if there is high latency
between the client and servers.

Theorem: In an asynchronous system that provides live-
ness when up tof out of3f + 1 replicas fail, guarantee-
ing fork consistency in the face of more thanf replica
failures requires more than one round of client-server
communication on each operation.
Proof Sketch: For simplicity, we consider the case of
four replicas withf = 1, though the same argument ap-
plies to any number of replicas. In a single-round proto-
col, a client sends a single message that eventually con-
vinces honest replicas to alter their state by executing an
operation. Consider the case when two clients,a andb,
issue two requests,opa and opb, concurrently. Neither
client could have known about the other’s request when
issuing its operation. Thus, eitheropa or opb is capable
of being executed before the other.

If, for instance, the network delaysopa, opb could
execute beforeopa arrives and vice versa. Moreover, be-
cause of liveness, requestopa must be capable of exe-
cuting if both clientb and replicaw are unreachable, as
long as the remaining three replicas respond to the pro-
tocol. Figure 5 illustrates this case, where the result list
〈opb, opa〉 was eventually returned to clienta.

The same reasoning also applies to clientb, who
might get result list 〈opa, opb〉 when replica u is
unreachable. These two out-of-order result lists reflect
the (malicious) servers’ ability to reorder concurrent
requests at will, if a single message from a client is
allowed to change the system stateatomically. This
clearly violates the no-join property of fork consis-
tency.

3.3 A two-round protocol

The problem with a one-round protocol is that at the
time a client signs a request for operationop, there may
be previous operations by other clients it does not know
about. Therefore, there is nothing the client can include
in its signed request message to prevent the two honest
replicas (u andw) from believingop should execute in
two different contexts.

In a two-round protocol, the client’s first message
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Figure 6: A two-round protocol.

can request knowledge about any previous operations,
while the second message specifies both the operation
and its execution order. Figure 6 shows such a proto-
col. A client sends anacquire request to acquire the
system’s latest state in the first round; a server replies
with its current state. Disregarding efficiency, a straw-
man protocol might represent this state as the previous
operation’s result list (i.e., the impractically long listof
every operation ever executed). In the second round, the
client commits its operationop by signing a message that
tiesop to its execution order. Again, in a straw-man, in-
efficient protocol, the client could append its new oper-
ation to the list of all previous operations and sign the
whole list. Servers then sanity check the commit mes-
sage, executeop, and send back the reply.

Note that servers are not allowed to abort an op-
eration after replying to anacquire message—the
acquire-ack is a commitment to execute the operation
in a particular order given a signedcommit. Otherwise,
if servers could optionally abort operations, malicious
replicasp andq could convinceu anda thatopa aborted

while convincingw to execute it, violating fork consis-
tency. But of course a server cannot execute an operation
until it sees the signedcommit message, which is why
clients can affect both liveness and throughput.

These problems can be overcome in application-
specific ways. When it is known that an operation’s re-
sult cannot depend on a previous operation’s execution,
it is safe to execute the later operation before the pre-
vious one commits. SUNDR performs this optimization
at the granularity of files and directory entries, which
mostly overcomes the performance bottleneck but can
still lead to unavailable files after a client failure. Be-
cause SUNDR does whole-file overwrites, one can re-
cover from mid-update client crashes by issuing a new
write that either deletes or supersedes the contents of
whatever file is generating I/O timeout errors.

HQ replication [8] similarly allows concurrent ac-
cess to different objects. The technique could be used to
improve performance of a two-round protocol. However,
object semantics are general enough that there would be
no way to recover from a client failure and still provide
fork consistency withf + 1 malicious replicas.

Figure 7 shows a two-round protocol in pseudocode.
Scurr

n represents noden’s latest knowledge of the sys-
tem state. We sayScurr

i ≺ Scurr
j (meaningScurr

i hap-
pens beforeScurr

j ) if one of nodej’s past system states
is identical toScurr

i —in other words, nodej’s current
knowledge is consistent with and strictly fresher thani’s.
In our straw-man protocol, ifScurr

n is a list of all opera-
tions ever executed, thenScurr

i ≺ Scurr
j meansScurr

i is
a prefix orScurr

j .

4 FORK * CONSISTENCY

Because of the performance and liveness problems of
two-round protocols, this section defines a weaker con-
sistency model, fork* consistency, that can be achieved
in a single-round protocol. Intuitively, rather than have
separateacquire andcommit messages, our plan will
be to have each request specify the precise order in
which the same client’spreviousrequest was supposed
to have executed. Thus, it may be possible for an honest
replica to execute an operation out of order, but at least
any future request from the same client will make the
attack evident.

Turning back to the example in Figures 3 and 4,
with a one-round protocol, after the system state has
been forked, clientc’s operationop4 might be applied
to servers in both fork sets ifc has no clue that the sys-
tem state has been forked when it issuesop4. Then the
honest servers in bothFSα andFSβ will update their
system state,Sα or Sβ , respectively, withop4, violating
the no-join property of fork consistency. However, client
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//executed by serverx upon receivingacquire.
procedure SERVER ROUND1(a, Scurr

a , op)
if next = null and Scurr

a ≺ Scurr
x

Extract timestampts from op;
Agree with other servers that current state isScurr

x

and next operation to execute isop from clienta;
next← [a, op];
send [acquire-ack, ts, Scurr

x ] to clienta;

//executed by clienta to collectacquire-acks
//and generatecommit.
procedure CLIENT CHECK COMMIT(op)
Decide on the system’s current stateScurr based on

2f + 1 matchingacquire-acks from servers;
Scurr

a ← Scurr;
send[commit, Scurr

a , op]Ka
−1 to all servers;

//executed by serverx upon receivingcommit.
procedure SERVER ROUND2(a, Scurr

a , op)
if next = [a, op] and Scurr

a = Scurr
x

(Scurr
x , res)← EXECUTE(Scurr

x , op);
send [reply, Scurr

x , res] to clienta;
next← null;

Figure 7: Pseudocode for a two-round protocol.

c is only going to accept the reply from one of the fork
sets, e.g.,FSα, and adopt its new state,Sα, as its fresh-
est knowledge of the system state. If the protocol can
prohibit any correct node that has seen state in one fork
set, namelyFSα, from issuing any operations that ex-
ecute in another (e.g.,FSβ), then all future operations
from client c can only be applied to servers in fork set
FSα (or subsequent forks ofFSα).

Fork* consistency therefore relaxes the no-join prop-
erty in fork consistency to a join-at-most-once property:
two forked result lists can be joined by at most one op-
eration from thesamecorrect client.

• Join-at-most-once Property:If two result lists ac-
cepted by correct clients contain operationsop′ and
op from the same correct client, then both result
lists will have the operations in the same order. If
op′ precedesop, then both result lists are identical
up toop′.

The join-at-most-once property is still useful for sys-
tem auditing. We can periodically collect all clients’ cur-
rent knowledge to check that all have seen each others’
latest operations. Suppose each client issues an opera-
tion for this purpose at timest1, t2 ... tn, wheretn is the
time of the latest check. The join-at-most-once property

guarantees that if the checks succeed, then the system
hasneverviolated ideal consistency up to timetn−1.

In the example above, for clienta, the new result list
is 〈op1, op2, op4〉, and forb, it is 〈op1, op3, op4〉. Yet, the
system still delivers fork* consistency at this moment,
just not fork consistency or ideal consistency. However,
fork* consistency forces malicious servers to choose be-
tween showingc’s future operations toa or b, but not
both.

4.1 Fork* consistency examples

In the card-swipe example, fork* consistency has ef-
fectively the same consequences as fork consistency. It
delays revocation and complicates recovery. The only
difference is that after the attack one operation from each
client may appear in both fork sets, so, for example, one
user may get access to a new door in both fork sets, but
no one else will.

In the case of the bank, fork* consistency increases
the potential loss. For example, the attacker can go to
one branch, withdraw $1,000, then go to the other branch
and deposit the $1,000. The attacker can ensure this de-
posit shows up in both fork sets—allowing him to with-
draw an additional $1,000 from the first branch, as well
as the $2,000 he can get from the branch at which he
made the deposit.

In the case of a heart-beat server used to sound an
alarm, fork* consistency doubles the amount of time re-
quired to detect a problem, since one increment of the
counter may show up in both fork sets.

5 BFT2F ALGORITHM

In this section, we present BFT2F, an extension of
the original PBFT protocol [6] that guarantees fork*
consistency when more thanf but not more than2f out
of 3f + 1 servers fail in an asynchronous system.

Like PBFT, BFT2F has replicas proceed through a
succession of numbered configurations calledviews, and
uses a three-phase commit protocol [22] to execute op-
erations within views. The three phases arepre-prepare,
prepare, and commit. In view numberview, replica
numberview mod 3f +1 is designated theprimaryand
has responsibility for assigning a new sequence number
to each client operation.

5.1 BFT2F Variables

Below, we describe major new variables and mes-
sage fields introduced in BFT2F. We use superscripts to
denote sequence number, e.g.,msgn refers to the mes-
sage with sequence numbern. We use subscripts to dis-
tinguish variables kept at different nodes.
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Hash Chain Digest (HCD): A HCD encodes all the
operations a replica has committed and the com-
mit order. A replica updates its current HCD to be
HCDn = D(D(msgn) ◦ HCDn−1) upon com-
mitting msgn, whereD is a cryptographic hash
function and◦ is a concatenation function. Repli-
cas and clients use HCDs to verify if they have the
same knowledge of the current system state.

Hash Chain Digest History: To check if a replica’s
current knowledge of the system state is strictly
fresher than another replica’s and not forked, each
replica keeps a history of past HCDs. We denote
replicap’s history entry formsgn asTp[n].

Version Vector: Every nodei represents its knowledge
of the system state in a version vectorVi. The ver-
sion vector has3f + 1 entries, one for each replica.
Each entry has the form〈r, view, n,HCDn〉Kr

−1 ,
wherer is the replica number,view is the view
number,n is the highest sequence number that node
i knows replicar has committed, andHCDn is r’s
HCD aftern operations. The entry is signed byr’s
private keyKr

−1. We denote replicar’s entry in
Vi by Vi[r], and use C structure notation to denote
fields—i.e.,Vi[r].view, Vi[r].n, andVi[r].HCD.

We define several relations and operations on these
data structures:

• Let V be a version vector. We define acur function
to represent the current state of the system inV as
follows: If at least2f+1 entries inV have the same
n andHCD values,cur(V ) is one of these entries
(e.g., the one with the lowest replica number). Oth-
erwise,cur(V ) = none.

• Let h and g be two version vector entries signed
by the same replica. We sayh dominatesg iff
h.view ≥ g.view and either the two entries have
identicaln andHCD fields orh.n > g.n.

• We sayh dominatesg with respect tohash chain di-
gest historyT iff h dominatesg and the two entries’
HCD fields appear at the appropriate places inT—
i.e., h.HCD = T [h.n] andg.HCD = T [g.n]. In
other words, this means thatg appears in the history
T that leads up toh.

Whenever a clienta sees a version vector entryh
signed by replicap, it always updates its own version
vectorVa by settingVa[p] ← h if h dominates the old
value ofVa[p]. A serverr similarly updatesVr[p]← h if
h is recent (e.g., not older than the beginning ofTr) and
dominates the oldVr[p] with respect toTr.

5.2 BFT2F Node Behavior

In describing BFT2F, we borrow heavily from
PBFT [6]. However, we point out two major differ-
ences between BFT2F and PBFT. First, unlike in PBFT,
BFT2F replicas do not allow out of order commits. This
requirement does not pose much overhead as replicas
must execute client operations in increasing sequence
numbers anyway. Second, BFT2F requires clients to
wait for at least2f + 1 matching replies before consid-
ering an operation completed, as opposed to thef + 1
matching replies required in PBFT.

5.2.1 Client Request Behavior

A client a multicasts a request for an operation
〈request, op, ts, a, cur(Va)〉K−1

a

to all the replicas,
where ts is a monotonically increasing timestamp,
cur(Va) is a’s last known state of the system, and the
message is authenticated bya’s signature key,Ka

−1.
We note that while PBFT uses more efficient MAC

vectors to authenticate requests from clients, BFT2F re-
quires public-key signatures. The reason is that faulty
clients may interfere with the replicas’ operation by issu-
ing requests in which some MAC vector entries are valid
and some are invalid. Such a partially correct MAC vec-
tor causes some replicas to accept the request and some
to reject it. PBFT can recover from such a situation if
f + 1 replicas attest to the validity of their MAC vector
entries. However, in BFT2F, we want to avoid executing
illegitimate operations even with> f faulty replicas,
which means it is still not safe to execute an operation
under such circumstances.

5.2.2 Server Behavior

Every server keeps a replay cache containing the last
reply it has sent to each client. Upon receiving a request
〈request, op, ts, a, cur(Va)〉K−1

a

from clienta, a server
first checks the signature, then checks that the request is
not a replay. Clients execute one operation at a time, so
if ts is older than the last operation, the server ignores
the request. Ifts matches the last operation, the server
just re-sends its last reply. Otherwise, the server checks
that cur(Va).HCD matches the HCD in the last reply
the server sent to the client. If it does not, the client may
be in a different fork set, or may be malicious and col-
luding with a malicious server. Either way, the server
ignores this request. Once a message has been validated
and checked against the replay cache, processing contin-
ues differently on the primary and other servers.

The primary replica,p, assigns the request a se-
quence numbern and multicasts apre-prepare
message〈pre-prepare, p, view, n,D(msgn)〉σp

to all
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other replicas. Hereσp is either a MAC vector or a sig-
nature withp’s private key,Kp

−1.
Upon receiving apre-prepare message matching

an accepted request, replicaq first checks that it has
not accepted the same sequence numbern for a dif-
ferent messagemsg′

n in the same viewview. It also
ensuresn is not too far out of sequence to prevent a
malicious primary from exhausting the sequence num-
ber space. Replicaq then multicasts aprepare message
〈prepare, q, view, n,D(msgn)〉σq

to all other replicas.
A replica u tries to collect2f matchingprepare

messages (including one from itself) with the same se-
quence numbern as that in the originalpre-prepare
message. When it succeeds, we say replicau haspre-
paredthe request messagemsgn. Unlike PBFT,u does
not commit out of order, i.e., it enters thecommitphase
only after having prepared the messageand committed
all requests with lower sequence numbers.

To start committing, replica u computes
HCDn ← D(msgn ◦ HCDn−1) and
sets Tu[n] ← HCDn, updates Vu[u] to
〈u, view, n,HCDn〉Ku

−1 , and multicasts acommit
message〈commit, 〈u, view, n,HCDn〉Ku

−1〉 to all
other replicas.

When replicaw receives acommit message from
u with a valid signature andHCDn, it updates the
entry for u in its current version vector,Vw[u], to
〈u, view, n,HCDn〉Ku

−1 . Replica w commits msgn

when it receives2f+1 matchingcommitmessages (usu-
ally including its own) for the same sequence numbern

and the same HCD (HCDn).
Replicaw executes the operation after it has commit-

ted the corresponding request messagemsgn. It sends a
reply message to the client containing the result of the
computation as well as its current version vector entry
Vw[w]. Sincew has collected2f + 1 matchingcommit
messages, we know that these2f + 1 replicas are in the
same fork set up to sequence numbern.

5.2.3 Behavior of Client Receiving Replies

A reply from replica w has the format,
〈reply, a, ts, res, 〈w, view, n,HCDn〉Kw

−1〉σw
,

where view is the current view number,ts is the
original request’s timestamp, andres is the result of
executing the requested operation. A client considers
an operation completed after accepting at least2f + 1
matching replies each of which contains the samets,
res, n, andHCDn. (Recall by comparison that PBFT
only requiresf + 1 matching replies.) This check
ensures the client only accepts a system state agreed
upon by at least2f + 1 replicas. Therefore, if no more
than2f replicas fail, the accepted system state reflects

that of at least one correct replica. Clienta also updates
its Va[w] to 〈w, view, n,HCDn〉Kw

−1 for eachw of
the 2f + 1 replies, ensuring thatHCDn becomes the
new value ofcur(Va).HCD.

To deal with unreliable communication, clienta
starts a timer after issuing a request and retransmits if
it does not receive the required2f + 1 replies before the
timer expires. Replicas discard any duplicate messages
and can also fetch missing requests from each other in
case the client crashes.

5.3 Garbage Collection

If a replicar has been partitioned from the network,
it may have missed some number of successfully exe-
cuted operations and need to learn them from other repli-
cas. For small numbers of missed operations, the replica
can just download the logged operations andcommits
and execute any operation that has2f + 1 commit mes-
sages with appropriate HCDs. However, if other replicas
have truncated their logs,r may not be able to download
all missing operations individually. It may instead need
to do a bulk transfer of the entire state of the service
from other replicas. The question then becomes how to
authenticate the state in such a transfer.

In PBFT, r validates the state using stable check-
points gathered everyI operations (e.g.,I = 128).
A stable checkpoint is a collection of signed messages
from 2f + 1 replicas attesting that the service had hash
D(staten) at sequencen. r can then believestaten. In
BFT2F, the signed messages must additionally vouch
that staten is in the same fork set asr and allow r

to bring its replay cache up to date. Our implemen-
tation accomplishes this by having each replica keep
state back tonlow, the lowest version number in its ver-
sion vector. This state may be required for application-
specific recovery from fork attacks anyway. However, it
requires unbounded storage while any replica is unavail-
able, which may be undesirable, so here we outline a
way to achieve fork* consistency with bounded storage.

When replicau signs a checkpoint for sequencen, it
includes its version vectorVu in the message. If now has
Vu[w].n ≤ n−2I, then no honest replica will ever ask to
be updated from a staten−2I or older. If, however, there
is aVu[w] ≤ n−2I, then, for each suchw, u includes in
the checkpoint one of its own old version vector entriesh

that dominatesVu[w] with respect toTu. Furthermore, it
keeps enough commit messages around to rollw’s state
forward from Vu[w].HCD to h.HCD, so thatw can
be assured it is in the same fork set ash. To ensurew
does not progress beyondh.n, replicas execute no more
than2I operations beyond the last stable checkpoint that
shows them up to date.
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In detail, u’s signed checkpoint has the form
〈checkpoint, r, n,D(staten),D(rcachen), Vu, E〉K−1

u

.
Herercachen is u’s replay cache at sequencen (without
the signatures or replica numbers, to make it identical at
all unforked replicas).V is u’s current version vector.
E is a set of older values ofVu[u] computed as follows.
For eachw in which Vu[w].n ≤ n − 2I, E contains
u’s signed version vector entry from the next multiple
of I after Vu[w].n + I. A stable checkpoint consists
of checkpoint messages signed by2f + 1 different
replicas with the samen, D(staten), D(rcachen),
and E (modulo the replica IDs and signatures inE).
Given a stable checkpoint,u can delete log state except
for operations more recent thann − 2I and the2I

operations leading up to each element ofE.
When computing a stable checkpoint, it may be

that replicas do not initially agree onE. However,
each replica updates its version vector using any re-
cent signed entry with a valid HCD in any other
replica’s checkpoint message and multicasts a new
checkpoint message upon doing so. (To ensure the
receiving replica can check the HCD, replicas ignore
commit andcheckpoint messages before the last sta-
ble checkpoint, so that once marked stale in a stable
checkpoint, a replica can only change to being com-
pletely up-to-date.) Note that even after a stable check-
point exists, a replica that was previously shown as out
of date can cause a second stable checkpoint to be gen-
erated for the same sequence number by multicasting a
checkpoint message with its up-to-date version vector.

5.4 Server View Change

In BFT2F, a replica r experiencing a
timeout sends a view-change message
〈view-change, view + 1, Vr[r], P 〉Kr

−1 to all other
replicas. HereVr[r] is the version vector entry forr’s
last committed operation, whileP is a set of setsPm for
each prepared messagem with sequence number higher
than n. Each Pm contains thepre-prepare mes-
sage form and 2f corresponding matchingprepare
messages.

The primaryp in the new viewview + 1 checks all
signatures (but not MACs) and validates theVr[r].HCD

value in view-change messages it receives. IfVp[p]
dominatesVr[r] with respect toTp, thenVr[r] is valid.
Otherwise, if Vr[r] dominatesVp[p], then p requests
from r an operation and2f + 1 matchingcommits with
appropriate HCDs for every sequence number between
Vp[p].n and Vr[r].n. p then executes these operations,
bringingTp up to date so thatVp[p] dominatesVr[r] with
respect toTp. If p cannot download the missing opera-
tions fromr, it does a bulk state transfer.

We say twoview-change messagesconflict if their
P fields include different operations for the same se-
quence number. This may happen if honest replicas are
forked because of more thanf failures, or if theσ au-
thenticators onpre-prepare and prepare messages
have corrupted MAC vectors and malicious replicas
claim to have prepared messages for which they didn’t
actually receive apre-prepare and2f + 1 matching
prepares. As long as there are2f + 1 honest replicas
(without which we cannot guarantee liveness), we will
be in the latter case andp will eventually receive2f + 1
valid and non-conflictingview-change messages (in-
cluding one from itself), at which point it multicasts a
new-view message〈new-view, view + 1,V, O〉Kp

−1 .
Here V is the set of2f + 1 valid, non-conflicting
view-change messages.O is a set ofpre-prepare
messages constructed as below:

1. p determinesmin-sas the lowest sequence number
of any version vector entry (Vr[r]) in an element of
V. p then determinesmax-sas the highest sequence
number of any of thePm sets in elements ofV.

2. For each sequence numbern from min-s through
max-s, p either (1) constructs apre-prepare
message in the new view, if aPm in one
of the view-change messages has a valid re-
quest for sequence numbern, or (2) constructs
a specialnull request〈〈pre-prepare, p, view +
1, n,D(null)〉Kp

−1 , null〉 to fill in the sequence
number gap.

A backup replicau in the new view validates the
new-view message as follows.u checks the version vec-
tor in each element ofV using the same checksp per-
formed upon receiving theview-change messages. Ifu
is too far out of date, it may need to do a state transfer.
u also verifies thatO is properly constructed by execut-
ing the same procedure as the primary. Ifu accepts the
new-view message as valid, it sends aprepare mes-
sage for each message inO and proceeds normally in
the new view.

When there are no more thanf faulty replicas, the
above algorithm is essentially the same as PBFT with
hash chain digests replacing the state hashes in PBFT’s
checkpoint messages. When more thanf but no more
than 2f replicas fail, there may be concurrent view
changes in different fork sets. In the worst case when
2f replicas fail, up tof + 1 view changes may succeed
concurrently, leading tof + 1 fork sets.

However, with no more than2f failures, each fork
set is guaranteed to contain at least one honest replica,
r, which ensures fork* consistency. To see this, we con-
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The temporal order:〈op1, op2, op3, op4〉
op1 op2 op3 op4

The order executed by fork setFSβ :〈op1, op3, op4〉

The order executed by fork setFSα:〈op1, op2, op4〉

Figure 8: Example of two forked result lists. The middle
timeline shows the result list that should have been exe-
cuted by a non-faulty system. The top timeline shows a
forked result list that does not reflectop3, while the bot-
tom timeline shows another one missing operationop2.

sider two cases. First, supposer does not do a state trans-
fer. Its hash chain digests are then simply the result of
processing a sequence of operations in turn. Becauser

checks thecur(Va) in a client’s request against the last
reply to that client,r will never accept a request from
an honest client that has executed an operation in an-
other fork set. At worst,r may execute the first request a
client executes in a different fork set—hence achieving
the join at most once property.

On the other hand, ifr does a state transfer, this re-
quires2f + 1 other replicas to vouch forr’s new state.
At least one of those2f + 1 replicas—call itu—must
also be honest and inr’s fork set. Sinceu is honest, it
ensures that any operationsr skips executing because of
the state transfer do not violate fork* consistency.

5.5 An Example

We demonstrate the join-at-most-once property of
BFT2F during normal case operation using a simple ex-
ample. As in the example from Section 3, the system
consists of four replicasu, p, q, w, with p being the pri-
mary in the current view and the two replicasp, q being
malicious.

First we explain the intuition for why the join-at-
most-once property can be achieved with a one-round
protocol. Suppose the system is forked into two fork sets
between two operationsop1 andop4 issued successively
by clientc. Thenc’s second operation,op4, might show
up in two fork sets because the HCDc includes in the re-
quest forop4 is taken from the reply toop1, on which all
replicas agreed. However, the repliesc accepts forop4

can only come from one or the other of the fork sets.
Any subsequent operationc issues will only be valid in
that particular fork set.

Now we consider this example in detail: clientc is-
sues the first (op1) and fourth operation (op4), and some
other clients issue the second (op2) and third (op3) op-
erations. The result list〈op1, op2, op3, op4〉 would have
reflected the order assigned in an otherwise non-faulty
system, as shown in Figure 8. The malicious primary,
p, assigns sequence number1 to c’s first operationop1

and shows it to all other replicas. Subsequently,p only

shows the second operation,op2, to u and the third op-
eration,op3, to w, but it assigns bothop2 andop3 the
same sequence number2. As a result, two fork setsFSα

andFSβ are formed, whereFSα containsu which has
seen〈op1, op2〉 and FSβ containsw which has seen
〈op1, op3〉.

Replicap then manages to join the two forked result
lists for the first time with the operationop4; the two re-
sult lists become〈op1, op2, op4〉 and〈op1, op3, op4〉, re-
spectively. Suppose clientc gets the required2f +1 = 3
replies forop4 from fork setFSα = {u, p, q}. Thenc’s
version vector will containHCD3 = D(op4 ◦D(op2 ◦
D(op1))), while replicaw in FSβ has a different ver-
sion vectorVw containingHCD′3 = D(op4 ◦D(op3 ◦
D(op1))) (shown in Figure 9 Part (i)). Hereafter, if ma-
licious serversp andq try to join the two forked result
lists with a another operation byc, sayop5, theHCD3

included inc’s request would conflict with that inw’s
replay cache (Figure 9 Part (ii)).

5.6 Discussion

Ideal consistency requiresquorum intersection; any
two quorums should intersect in at least one non-faulty
replica. Fork* consistency requires onlyquorum inclu-
sion; any quorum should include at least one non-faulty
replica. BFT2F uses quorums of size2f+1. However, as
depicted in Figure 1, this can be generalized to a param-
eterized BFTx protocol that ensures quorum inclusion
up tox failures with quorums of sizex+1. With 3f +1
replicas, any two quorums of sizex + 1 must overlap
in at least2(x + 1) − (3f + 1) = 2x − 3f + 1 repli-
cas, which guarantees quorum intersection up to2x−3f

failures. Unfortunately,quorum availability, or liveness,
requires that there actually bex + 1 replicas willing to
participate in the protocol, which is only guaranteed up
to 3f + 1− (x + 1) = 3f − x failures.

BFT2F setsx = 2f . When up tof replicas fail, this
provides quorum intersection. Because any two quorums
share a non-faulty replica, the protocol can guarantee
that any operation executed in one quorum is reflected in
every subsequent quorum, just as in PBFT. When more
thanf but no more than2f replicas fail, the quorums
become fork sets. Quorum inclusion ensures at least one
honest replica in each fork set. The honest replica in turn
ensures that the quorum only executes legitimate opera-
tions and enforces join at most once, but it cannot guar-
antee ideal consistency or liveness.

BFT2F aims for full compatibility with PBFT and,
subject to PBFT’s liveness guarantees, an optimal guar-
antee beyondf replica failures. Another potentially use-
ful construction is BFT3F, withx = 3f . BFT3F re-
quires each quorum to be of size3f +1—i.e., to contain
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Figure 9: Example of the join-at-most-once property.op4 is used to join two forked result lists as in Figure 8. Part (i)
showsop4’s commit and reply phases. Since the result lists have already been forked, honest replicas in the two fork
sets have different HCD histories by sequence number3—Tu[3] = HCD3 for u andTw[3] = HCD′3 for w—and
thus include different HCDs in their replies. Clientc accepts the reply from fork setFSα and updatesVc accordingly.
(c might detect a Byzantine failure upon seeingw’s divergent reply inFSβ , but here the network drops the message.)
Part (ii) shows that no future operation fromc can execute inFSβ , sinceHCD3 won’t matchw’s last reply toc.

every replica in the system. This has two implications.
First, since onlyone fork set can be formed, ideal con-
sistency will be achieved with up to3f failures. Second,
the system will lose liveness with even one unrespon-
sive replica, because no quorum can be formed under
such circumstances. A system may want to use BFT3F
if safety is the highest priority.

Both SUNDR [11] and BFT2F use version vectors
to represent a node’s knowledge of the current system
state, with one major difference. SUNDR’s version vec-
tors have one entry per client, while BFT2F’s use one per
server. This difference brings BFT2F two advantages.
First, BFT2F’s version vectors are smaller, since there
are typically fewer replicas than clients. Second, in both
protocols, a node does not see any updates for version
vector entries of nodes in a different fork set. In SUNDR,
a stagnant entry could innocently signify that a client is
simply offline or idle, both legitimate states. In contrast,
BFT2F’s replica servers should always remain online to
process operations, so that a stagnant version vector en-
try is a good indication of failure.

6 PERFORMANCE

We built a prototype implementation of the BFT2F
algorithm on FreeBSD 4.11, based on our ported version
of the BFT [6] library.

6.1 Implementation

BFT2F’s additional guarantee over BFT [6] to al-
low detection of past consistency violations comes at
the expense of much increased use of computationally
expensive public key signatures instead of the symmet-
ric session-key based Message Authentication Codes
(MACs) used by PBFT. We use NTT’s ESIGN with key
length of2048 bits in BFT2F. On a 3 GHz P4, it takes
150µs to generate signatures, 100µs to verify. For com-
parison,1280-bit Rabin signatures take 3.1 ms to gener-
ate, 27µs to verify.

All experiments run on four machines; three 3.0 GHz
P4 machines and a 2.0 GHz Xeon machine. Clients run
on a different set of 2.4 GHz Athlon machines. All ma-
chines are equipped with 1-3 GB memory and connected
via a 100 Mbps Ethernet switch. Performance results are
reported as the average of three runs. In all cases, stan-
dard deviation is less than3 % of the average value.

6.2 Micro benchmark

Our micro benchmark is the built-insimpleprogram
in BFT, which sends anull operation to servers and
waits for the reply. Appending version vector entries in
request andreply messages has the most impact to
the slowdown of BFT2F, compared to BFT.

12



req/rep(KB) BFT BFT(ro) BFT2F BFT2F(ro)
0/0 1.027 0.200 2.240 0.676
0/4 1.029 0.778 2.242 1.600
4/0 4.398 3.486 5.647 3.942

Table 1: Latency comparison of BFT and BFT2F (in mil-
liseconds).

6.3 Application-level benchmark

We modify NFS to run over BFT2F, and compare
it to the native BSD NFSv2, NFS-BFT running on4
servers, and SUNDR (NVRAM mode) running on1
server. The evaluation takes five phases: (1) copy a soft-
ware distribution packagenano-1.2.5.tar.gz into
the file system, (2) uncompress it in place, (3) untar the
package, (4) compile the package, (5) clean the build ob-
jects.

NFSv2 NFS-BFT NFS-BFT2F SUNDR
P1 0.302 0.916 1.062 0.299
P2 1.161 3.546 4.131 0.520
P3 2.815 4.171 5.666 1.668
P4 3.937 4.296 4.922 3.875
P5 0.101 0.778 1.707 0.361

Total 8.316 13.707 17.488 6.723

Table 2: Performance comparison of different file system
implementations (in seconds).

As Table 2 shows, the application-level performance
slowdown in NFS-BFT2F relative to NFS-BFT is much
less than that observed in our micro benchmark. This
is because the high cost of public key operations and
transferring version vector entries accounts for a smaller
fraction of the cost to process requests. Both BFT2F and
NFS-BFT achieve much lower performance than NFSv2
and SUNDR, reflecting the cost of replication.

7 RELATED WORK

Byzantine fault tolerant systems generally fall into
two categories: replicated state machines [21] and
Byzantine quorum systems [12, 13, 14, 25]. PBFT and
BFT2F build on replicated state machines. By contrast,
Quorums have simpler construction and are generally
more scalable [1]. However, quorums usually provide
only low-level semantics, such as read and write, which
makes building arbitrary applications more challeng-
ing. Quorums also exhibit poor performance under con-
tention. Replicated state machines generally deal with
contention more efficiently, but scale poorly to larger
numbers of replicas. Many other BFT systems [18, 10, 5]
take this approach. Some wide area file systems [19, 2]

run BFT on their core servers. HQ replication [8] uni-
fies the quorum and state machine approaches by op-
erating in a replicated state machine mode during high
contention and in quorum mode during low contention.

Some work has been done to harden BFT systems
against the probability of more thanf simultaneous fail-
ures. Proactive recovery [7] weakens the assumption of
no more thanf faulty replicas during the lifetime of
the service to no more thanf failures during a window
of vulnerability. It achieves this by periodically reboot-
ing replicas to an uncompromised state. However, it’s
behavior is still completely undefined when more than
f replicas fail in a given window. Furthermore, some
problems such as software bugs persist across reboots.
BASE [20] aims to reduce correlated failures. It abstracts
well-specified state out of complex systems, and thus re-
duces the chances of correlated software bugs by allow-
ing the use of different existing mature implementations
of the same service.

By separating execution replicas from agreement
replicas [24], one can tolerate more failures within exe-
cution replicas or reduce replication cost. BAR [3] takes
advantage of the fact that selfish nodes do not fail in
completely arbitrary ways. Dynamic Byzantine quorum
systems [4] can adjust the number of replicas to tolerate
varyingf on the fly, based on the observation of system
behavior.

Securing event history has been studied in the sys-
tems like timeline entanglement [15], which takes the
hash chain approach as in BFT2F, and in [17, 23], which
use version vectors to reason about partial ordering.

8 CONCLUSION

Traditional BFT algorithms exhibit completely arbi-
trary behavior when more thanf out of3f+1 servers are
compromised. A more graceful degradation could im-
prove security in many settings. We propose a weak con-
sistency model, fork* consistency, for BFT systems with
larger numbers of failures. Fork* consistency prevents
clients from seeing the effects of illegitimate operations
and allows detection of past consistency violations. We
present a new algorithm, BFT2F, based on PBFT, that
provides the same guarantees as PBFT when no more
than f replicas fail, but offers fork* consistency with
up to 2f faulty replicas. While BFT2F does not guar-
antee liveness in the latter situation, denial of service is
far preferable to arbitrary behavior for most applications.
Evaluation of our prototype BFT2F implementation sug-
gest its additional guarantees come with only a modest
performance penalty.
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