Beyond One-third Faulty Replicas in
Byzantine Fault Tolerant Systems

Jinyuan Li and David Maztres
VMware Inc. and Stanford University

ABSTRACT called ideal consistencyr safety is the property that

the service appears to all clients to execute an identical
sequence of requests, and that this sequence preserves
the temporal order of non-concurrent operations. Live-

there are more tharf failures, traditional BFT proto- that th " K) i’
cols make no guarantees whatsoever. Malicious replicaéqe_BSS n’1eans atthe system makes progress In executing
clients’ requests, at least under some weak assumptions

can make clients accept arbitrary results, and the sys- .
tem behavior is totally unspecified. However, there is a 220Ut eventual message delivery.
large spectrum between complete correctness and arbi- Unfortunately, all BFT protocols make a strong as-
trary failure that traditional BFT systems ignore. This Sumption that some predetermined fraction of server
paper argues that we can and should bound the Systenr,eplicas are honest. In particular, the highest fraction
behavior beyond failures. of failures that an asynchronous BFT system can sur-
We present BET2F, an extension to the well-known vive without jeopardizing linearizability or liveness fs
Castro-Liskov PBFT algorithm [6], to explore the de- Outof3f + 1 replicas. The reason is that asynchronous
sign space beyond failures. Specifically, BET2F has com_munlcatlon_makes itimpossible to differentiate slow
the same liveness and consistency guarantees as PBFfEPlicas from failed ones. To progress safely wjitin-
when no more tharf replicas fail; with more thary responsive replicas, a majority of the remainiyg+ 1
but no more thar2f failures, BFT2F prohibits mali- ~ '€SPonsive ones must be honest.
cious servers from making up operations that clients ~ The security of today’s best-known BFT algorithms
have never issued and restricts malicious servers to onlyfails completely given even jusf + 1 compromised
certain kinds of consistency violations. Evaluations of a replicas. For example, an attacker who compromises two
prototype implementation show that the additional guar- out of four servers can return arbitrary results to any re-
antees of BFT2F come at the cost of only a slight perfor- quest by any client, including inventing past operations

Byzantine fault tolerant systems behave correctly
when no more tharf out of 3f + 1 replicas fail. When

mance degradation compared to PBFT. that were never requested by any user, rolling back his-
tory to undo operations that were already revealed to
1 INTRODUCTION clients, or producing illegal results that could not have

arisen from any valid sequence of operations. However,
depending on the situation, it may be harder for an at-
tacker to compromise two thirds of replicas than one
third. A system that guarantees some residual security

serv;ar_T cl;;\n survive el_/e_n whe_rllﬁomefz f_rlact|on (:]fthe :_T(p“'properties when a third or more of the replicas fail could
cas fail (become malicious). Thus, failures whose like- significantly improve security in such settings.

lihood is not correlated across machines have a much
Fortunately, linearizability and total failure are not

smaller probability of affecting overall application secu h I ; h | of thi Ki limit th
rity. In particular, if replicas are separately administgr the only options. The goal of this work Is to limit _t €
damage when more thafi out of 3f + 1 servers in

BFT replication protects against malicious or incompe- : . o
a replicated state system fail. Specifically, we explore

tent machine operators. To a limited extent, BFT replica- K ot gel. fork* ot
tion also protects against software errors in components® €W, WEAKET CONSIStency model, Tork™ consistency, a

with different implementations on different machines. 3\(7;\1/ ?t'vki of fqu: cons.lts_tency |_|E)t|rotduged zarher t[16],'
BFT protocols generally aspire to two properties [6]: Ith fork™ consistency, 1t1s possible to bound a system's

linearizability [9] and liveness Linearizability, also behavior when betweefH-.l and2.f.re.pllcas have failed.
When2f + 1 or more replicas fail, it is unfortunately not

*Research done while the author was visiting Stanford Usiter possible to make any guarantees without simultaneously

Applications with high security needs can reduce
the danger of attacks through Byzantine-fault-tolerant
(BFT) replication. A service replicated over several BFT

% term BFTx in Figure 1. However, achieving fork* con-

’5%3/00,7 safety sistency with more thadf failures comes at the cost
O f ificing liveness when there are fewer thfafail-
256t 1 . of sacrificing liveness whe :
oy 4 ures. Administrators who care more about security than
‘9/{9/) 2w3f| = availability can tune the protocol to guarantee fork* con-
e wEoar : - L 212 L sistency anywhere up % failures. In fact, through a
)2(\6 liveness degenerate case, a system configured to guarantee fork*
1 consistency with as few as one correct replica actually
Y Lo L AT provides linearizability, at the cost of sacrificing livesse
PBET BFT2F BFTz in the face of even one failure.

The paper is organized as follows. We start by spec-
ifying the details of the system model and our assump-
tions in Section 2. Section 3 gives a formal specifica-
tion of fork consistency and proves that no protocols
can guarantee fork consistency using only one round of
communication when more thafiservers fail. In Sec-
sacrificing liveness for cases whefeor fewer replicas tion 4, we relax the model of fork consistency further to
fail. arrive at fork* consistency, which is achievable using a

We propose BFT2F, a protocol that provides exactly one round protocol and still provides useful guarantees.
the same linearizability guarantee as PBFT [6] when up We present BFT2F, an extension to the classical PBFT
to f replicas have failed. When more thamut no more protocol to achieve fork* consistency when more ttfan
than2f replicas have failed, two outcomes are possible. servers are faulty in Section 5. We evaluate a prototype
(1) The system may cease to make progress—In otheimplementation of BFT2F in Section 6. Lastly, we dis-
words, BFT2F does not guarantee liveness when morecuss related work in Section 7 and conclude in Section 8.
than f replicas are compromised. Fortunately, for most
applications, denial of service is less harmful than arbi-
trary behavior. (2) The system may continue to operate2 MODELS AND ASSUMPTIONS
and offer fork* consistency, which again for many appli-
cations is preferable to arbitrary behavior. We use the same replicated state machine model as

Fork* consistency is perhaps best motivated by ex- presented in past work [6, 24]. The network is unreliable
ample. Consider a campus on which people swipe ID@nd may replicate, discard, and reorder messages with
cards to open locked doors. Suppose the server that prothe one exception that it cannot indefinitely prevent two
cesses access requests is replicated on four machine§onest parties from communicating with each other.
With PBFT, an attacker who compromises two replicas The system consists of a number of clients 3fid-1
can open any door on campus—even doors he has neveteplicated servers, whergis a predetermined parame-
had access to—without leaving an audit trail. With fork* ter. Clients make requests for operations to servers. An
consistency, the attacker might be able to delay revo-operation isexecutedvhen servers accept it and apply it
cation requests and gain access to rooms he should n¢o their state. An operation isompletedvhen its origi-
longer have access to. He may also complicate recoverynating client accepts the reply. We use lower-case letters
by causing his accesses to be logged on only one correcthat appear early in the alphabet suchuas, ¢ to de-
replica instead of all correct replicas. However, he will note clients, and letters that appear late in the alphabet
not gain access to new rooms or be able to unlock doorssuch a, ¢, u, w to denote servers. We also use the term
without leaving some evidence behind. replicas and servers interchangeably. A node is either a

In practice, surviving up t@f malicious replicas en- ~ client or server. Each node has a public/private key pair.
ables replicated state systems for the first time to han-Each server knows the public keys of all nodes and each
dle the case where majority of the replicas may fail. ~ client knows the public keys of all servers.

Meanwhile, BFT2F does not compromise any guaran- We assume a Byzantine failure model. A faulty node
tees that existing BFT systems provide. One might won- may either halt or deviate from correct behavior arbi-
der if there exist protocols that guarantee fork* consis- trarily, even colluding with other faulty nodes. However,

tency with even larger numbers of failures, exgfail- a faulty node cannot forge digital signatures of correct
uresfor2f < z < 3f. The answer is yes. Infact, BFT2F nodes or find collisions of a cryptographic hash func-
can be easily parameterized to support that, which wetion.

Figure 1: Comparison of the safety and liveness guaran-
tees of PBFT, BFT2F, and BIET As we can see, BFT2F
provides extra safety guarantees without compromising
liveness, which is strictly better than PBFT.

3 FORK CONSISTENCY I At server side:
(S™*L res) « EXECUTE(S™, op);
Figure 2 shows the server-side interface between a

state-machine replication system (such as PBFT) and gigyre 2: pseudocode for replicated state machines.
the replicated service (e.g., an NFS file server). The)]
service starts in a fully-specified initial state and pro- €ry honest replica will have the same result list' =
vides a single function, BECUTE, that takes a request (0P, 0p’, ..., op™) for operationop”. Moreover, this list
operation,op, as an argument, then deterministically Will preserve the temporal order of non-overlapping op-
updates its state and returns a restés In ordinary ~ €rations. MaI|C|ou§ replicas, of course, may _behave as
operation, clients submit requests through a client-sidethoughop™s result isnot the outcome of executing",
replication library. The server-side code communicates but rather of some different result li. In fact, ma-
amongst replicas so as to invok&EcUTE with aniden- icious server behavior may be incompatible withy
tical sequence of requests on every replica, thereby propossmle sequence of legitimate requests; we therefore
ducing identical results to send back to the client. The allow L** to contain illegal operations (such as “cause
client side library returns the results from the matching the next operation to return this particular result”).
replies to the client. When a system undergoes total failure (as in the case
Of course, a compromised server need not behave® PBFT with more thanf faulty replicas), an oper-
as described above. It can fail to respond to messagestion's result list even at an honest replica might not
Worse vet, it may return arbitrary results to clients; contain all previously |_ssued req_uests; ma_I|C|0us servers
it may subvert network routing to intercept and tam- MY ha\{e succeeded in concealing the_ existence of Ieglt-
per with packets: it may even collude with other com- imately issued operations. Worse yet, it may be that dif-

promised servers and send carefully-crafted messagegerem replica’s result lists contain the same operations

that subvert honest replicas and ultimately convince the" different orders, and that this convinces the client li-
client library to return incorrect or inconsistent results braries on different machines to return inconsistent re-

We need techniques that allow honest clients and rep"_sults. To mitigate these problems, we previously defined

cas to minimize the damage that may be caused by mad consistency model, fork consistency [16], that can be
licious replicas. realized in the presence of entirely malicious servers. An

A significant part of the challenge is ensuring that impqrtant property of forlf _consistency s that it helps
malicious replicas do not corrupt the internal state of provide server accguntablllty by_allowmg clients to de-
honest replicas. Because an honest replica’s internaf SCt 8Ny Past consistency violations on the part of bad

state is entirely determined by the sequence of all oper->¢"Ve's:

ations it has ever executed, we introduce a term for thist. "E) ?eﬂmng forkfcongstengy, we tmlaket a dh'.suhnc'
history: We call the sequende’! — (op', op?, ..., op™) ion between operations issueddnyrectclients, whic

of all operations executed by a replica ttesult list of obey the’ protocol, anahaliciousor cqmpromised clignts

its latest operatiormp™. This result list entirely deter- that dqn L We use the term reSl.“t lists only for repl_les to
mines both the result returned by thgECUTE function opgratlons |s_sued by correct clients running our library,
for op™ and the states™*+! of the replica after execut- as it makes little sense to talk about the results seen by

ing op™. Whenever possible, we would like to ensure clients that do notimplement the protocol or even neces-

that honest replicas all have the same result lists and tha?arlly use our software. However, we consider any result
accepted by a correct client to have a result list. In the

these lists contain only requests legitimately issued b e
y req g y yevent that malicious servers completely break the sys-

users. .) : .
tem, they may induce clients to accept “impossible” re-

To defend against illegitimate requests, each opera- . . ; :
. . . T sults, in which case the corresponding result lists must
tion may be signed by the key of its originating user. . .
have illegal operations.

Without knowing a user’s private key, a bad replica can- o)) .
not forge requests. By verifying the signatures on re- Defm!uon: A syste_m |sfork_con5|stentf and only if it
quests, honest replicas can limit themselves to callingSatisfies the following requirements:
EXECUTE only on operations legitimately requested by
users. Should malicious replicas learn a compromised
user’s private key, they may be able to convince hon-
est replicas to execute arbitrary operations with the priv-
ileges of the compromised user; effectively any well-
formed operation by a compromised user is legitimate. e Self-consistency PropertyEach honest client sees
In an ideally consistent (well-behaved) system, ev- all past operations from itself: if the same client

e Legitimate-request Property: Every result ac-
cepted by a correct client has a result listhat
contains only well-formed operations legitimately
issued by clients.

issues an operatioop’ beforeop’, thenop’ also
appears ip’’s result list.

This property ensures that a client has a consistent
view with respect to its own operations. For exam-
ple, in a file system, a client always reads the effect

of its own writes. O
cop

e No-join Property: Every accepted result list that system state is forked

contains an operatiasp by an honest client is iden-
tical up toop.

One corollary of fork consistency is that when two
clients see each others’ recent operations, they have also
seenall of each other’s past operations in the same order.
This makes it possible to audit the system; if we can col-
lect all clients’ current knowledge and check that all can Figure 3: An example of fork consistency. Since the
see each others’ latest operations, we can be sure that th&erver deceives clierit abouta’s operationop?, client
system haseverin the past violated ideal consistency. @'S result list (op', op*), and b’s result list (op*, op®)
Another corollary is that every result list preserves the are only fork consistent, not ideally consistent. (Styictl
temporal order of non-concurrent operations by correct SPeaking, client still has ideal consistency at this mo-
clients, since an accepted result list cannot contain oper/nent, shouldp? be ordered beforep®. However, client

ations that have not yet been issued. a will miss ideal consistency hereafter.)
We say two result lists areonsistentf one is an im-

proper prefix of the other. We say two result lists are @?er_.__y_,.fﬁ@\

forkedif they are not consistent. For instance, result list 7 ;7T ~.

(opt, op?) and result list(op*, op®) are forked, while ,"' @ @ @'\ @ N
\ i

(opt, op?) and {op', op?, op®) are not. If clients accept

: ’ 7 /
forked result lists, the system has failed to deliver ideal N @_\@/’@ e
consistency. S -
We say servers are in differefark setsf they reflect honest, or'malicious provably malicious

forked result lists. A fork set consists of a set of servers

Who return the'same set of consistent result lists to a"Figure 4: In a replicated state system, the intersection
clients, though in an _asynchronous system, some result%f two fork sets can only consist fovably malicious

may not reach the client before an operation completes.qoers which are denoted by shaded circles. The parti-
Intuitively, a correct server cannot be in more than one tion that excludes the intersection part might have honest

fork set. A malicious server, however, can simultane- ggerq and malicious ones that have not yet misbehaved.
ously be in multiple fork sets—pretending to be in dif-

fereni'i syst;:m statesl Whhen talklngkto délﬁerent nhodesl._ An FS,; after that, clienb’s operationop? returns with the
attacker who controls the network and enough replicas .o, ; list(op!, op*) from fork setF"Ss. Here the server

may cause the remaining honest replica_s to epter _dif'deceivesb abouta’'s completed operatioop?. Therefore,
ferent forlfs sets from one another, at which point with it s resylt list and clienb's are forked. At this mo-
any practical protocol clients can no longer be assuredmem, one can verify that the system has delivered fork

of |d§al conssﬁency e wh K , consistency, but failed to provide ideal consistency. It is
Figure 3 shows an example where for ConsIstency oty pointing out that if a protocol returned the entire

differs from ideal consistency. Initially, all clients hav result list with each reply to an operation, a client could

o) . 9
thedsame Lesuklt Iﬁtop)- (Iilllgntczllssges]c a reiuelflo ' compare result lists to detect the attack whenever it re-
and gets back the result ligop", op®) from fork set o eq replies from two different fork sets. The BFT2F
1Technically, a contrived protocol could permit honest regpi to DIrOt_OCOI presented l.n Section 5 _uses hashes' to achieve a
enter forked states that clients could always detect. Hewesuch a Similar guarantee without the efficiency or privacy prob-

protocol would be needlessly vulnerable; since honestazpknow lems of shipping around result lists.
the system’s complete state, they can and should detect aroksitt
clients can, rather than purposefully entering divergeates that Figure 4 shows a potential configuration that could

would be more difficult to recover from. produce the two fork sets in Figure BS,, [F'S3 must

have only faulty servers that have already acted mali- serious implication of this is that the system can no
ciously (e.9.p, ¢, 0). F'So — (FSo (F'S3) andF Sz — longer survive client failures—if a client fails between
(F'So N FSg) can include either honest servers (ewg., the first and second messages of an operation, the sys-
w, t), or malicious servers who have not misbehaved sotem may no longer be able to make progress. Another
far (e.g.,r could be such a server), and so who are exter-disadvantage is that slow clients can severely limit
nally indistinguishable from honest servers, though they system throughput by leaving servers idle between the

might later deviate from the protocol. two messages. Finally, there are various implementation
_ reasons why a one-round protocol is often simpler
3.1 Fork consistency examples and more efficient, particularly if there is high latency

For some applications, fork consistency may be between the client and servers.

nearly as good as ideal consistency. In the example of a h h h ides I
card-swipe access control service, if two out four repli- 1"€0rém: In an asynchronous system that provides live-

cas are compromised and an attacker forks the systenf!€SS When up tg out of 3 + 1 replicas fail, guarantee-
state, it is likely only a matter of hours or days be- INg fork consistency in the face of more thdreplica
fore people notice something is wrong—for instance that failures requires more than one round of client-server
new users’ cards do not work on all doors. At that point, COMMmunication on each operation.
the administrators must repair the compromised repli- Proof Sketch: For simplicity, we consider the case of
cas. In addition, they may need to merge access logs andour replicas withf = 1, though the same argument ap-
replay all revocations executed in either fork set by the Pli€s to any number of replicas. In a single-round proto-
two honest replicas. Even without server compromises, ¢l & client sends a single message that eventually con-
adding and removing door access is often not instama_vmces_honest re_phcas to alter their state by executing an
neous anyway, both because of bureaucracy and becauggPeration. Consider the case when two clientandb,
people do not always report lost or stolen ID cards im- ISSue two requestsyp, andop,, concurrently. Neither
mediately. _cl|er_1t cquld have _known abou_t the other’s request when
On the other hand, in other settings fork consistency ISSUINg its operation. Thus, eithap, or op; is capable
may lead to quantifiable damage compared to ideal con-°f P€ing executed before the other.
sistency. Consider a bank that uses four machines to If, for instance, the network delayg,, op; could
replicate the service that maintains account balances&Xecute beforep, arrives and vice versa. Moreover, be-
An attacker who compromises two of the machines andcause Of liveness, request, must be capable of exe-
forks the state can effectively duplicate his account bal- cuting if both clientb and replicaw are unreachable, as
ance. If the attacker has $1,000 in his account, he can gdong as the remaining three replicas respond to the pro-
to one branch and withdraw $1,000, then go to a branchtocol. Figure 5 illustrates this case, where the result list
in a different fork set and withdraw $1,000 again. (ops, 0pa) Was eventually returned to clieat
Finally, of course, there are settings in which fork ~ The same reasoning also applies to cliéntvho
consistency on its own is nearly useless. For example,Might get result list(op,,op,) when replicau is
a rail signaling service split into two fork sets, each of unreachable. These two out-of-order result lists reflect
which monitors only half the trains and controls half the the (malicious) servers’ ability to reorder concurrent
signals, could easily cause a catastrophic collision. Onefequests at will, if a single message from a client is
way to mitigate such problems is to leverage fork consis- allowed to change the system statomically. This
tency to get bounded inconsistency through heartbeatsclearly violates the no-join property of fork consis-
A trusted heartbeat client could increment a counter ev-t€ncy. i
ery few seconds; trains that do not detect the counter
being incremented could sound an alarm. The attacker
would then need to compromise either anotfiaepli- 3.3 Atwo-round protocol

cas or the heartbeat box to suppress the alarms. The problem with a one-round protocol is that at the

time a client signs a request for operatign there may

be previous operations by other clients it does not know

about. Therefore, there is nothing the client can include
Unfortunately, for a system to guarantee fork in its signed request message to prevent the two honest

consistency when the fraction of honest replicas is tooreplicas ¢ andw) from believingop should execute in

small for linearizability, clients must send at least two two different contexts.

messages for every operation they perform. The most In a two-round protocol, the client’s first message

3.2 Impossibility of one-round fork consis-
tency

while convincingw to execute it, violating fork consis-
tency. But of course a server cannot execute an operation
until it sees the signedommit message, which is why
clients can affect both liveness and throughput.

These problems can be overcome in application-
specific ways. When it is known that an operation’s re-
sult cannot depend on a previous operation’s execution,
Server-server agreeme it is safe to execute the later operation before the pre-
client-server request/reply vious one commits. SUNDR performs this optimization

- X~ -dropped messages at the granularity of files and directory entries, which

mostly overcomes the performance bottleneck but can
Figure 5: Two malicious serverg @ndq) wear differ- still lead to unavailable files after a client failure. Be-
ent hats when talking to distinct honest serverso¢ cause SUNDR does whole-file overwrites, one can re-
w) in the server-server agreement phase, during whichcover from mid-update client crashes by issuing a new
all servers communicate with each other to achieve con-Write that either deletes or supersedes the contents of
sensus on incoming requests. Meanwhile, they delay thevhatever file is generating I/O timeout errors.

communication between andw. In this way,p andg, HQ replication [8] similarly allows concurrent ac-
with w, return result listop,, op,) to clienta; p andg, cess to different objects. The technique could be used to
with w, return{op,, ops) to clientb. improve performance of a two-round protocol. However,
object semantics are general enough that there would be
SERVERROUND1 SERVERROUND2 _ no way to recover from a client failure and still provide

server x fork consistency withf + 1 malicious replicas.
Figure 7 shows a two-round protocol in pseudocode.

Seurr represents node’s latest knowledge of the sys-
tem state. We sag;""" < S§*"" (meaningSy*"™ hap-
pens befores“™") if one of nodej’s past system states
is identical to.S{*""—in other words, nodg’s current
knowledge is consistent with and strictly fresher ttian

CLIENT_CHECK COMMIT client a In our straw-man protocol, if¢*"" is a list of all opera-

tions ever executed, theff*’" < S meansS{'" is

a prefix orS§™.

can request knowledge about any previous operations,

while the second message specifies both the operatior] FORK* CONSISTENCY

and its execution order. Figure 6 shows such a proto-

col. A client sends amcquire request to acquire the

Figure 6: A two-round protocol.

Because of the performance and liveness problems of
two-round protocols, this section defines a weaker con-

system’s latest state in the first round; a server replies . . . :
with its current state. Disregarding efficiency, a straw- sistency model, fork consistency, that can be achieved
in a single-round protocol. Intuitively, rather than have

man protocol might represent this state as the previous h) q i | "
operation’s result list (i.e., the impractically long list sepflraheacqulrehan Comn;lt me_ssa}[%es, our pian \(/jw .
every operation ever executed). In the second round, théJe 0 have each request specify the precise order in

client commits its operationp by signing a message that \tNhr']Ch the sar‘rgedclllt_ar:ltprf-iwousrbequest ytx)/lr;\sfsupp()r]sed t
tiesop to its execution order. Again, in a straw-man, in- 0 have executed. Thus, it may be possibie for an hones

efficient protocol, the client could append its new oper- replica to execute an operation out Of order', but at least
ation to the list of all previous operations and sign the atr;y fll:tur% re(tquest from the same client will make the
whole list. Servers then sanity check the commit mes- attack evident.

sage, executep, and send back the reply. Turning back to the example in Figures 3 and 4,
' ’ with a one-round protocol, after the system state has

Note that servers are not allowed to abort an op- been forked, client’s operationop* might be applied
eration after replying to aracquire message—the to servers in both fork sets ifhas no clue that the sys-
acquire-ack is a commitment to execute the operation tem state has been forked when it issugs Then the
in a particular order given a signedmnit. Otherwise, honest servers in both'S, and 'Sz will update their
if servers could optionally abort operations, malicious system stateS,, or Ss, respectively, withop?, violating
replicasp andq could convince, anda thatop, aborted the no-join property of fork consistency. However, client

/lexecuted by servetr upon receivingacquire.
procedure SERVER.ROUND1(a, S$*"", op)
if next = null and S < S
Extract timestamps from op;
Agree with other servers that current stat&js™”
and next operation to executedis from clienta;
next < [a, op);
send hcquire-ack, ts, S to clienta;

/lexecuted by client to collectacquire-acks
/land generateommit.
procedure CLIENT _CHECK_COMMIT (op)
Decide on the system’s current st&t&"” based on
2f + 1 matchingacquire-acks from servers;
Sg’u’l”l" «— SC’U.’I"I”;

send[commit, S, op] i, -1 to all servers;

/lexecuted by server upon receivingcommit.
procedure SERVER_ ROUND2(a, S op)
if next = [a,op] and S = ST
(S5urr res) «— EXECUTE(SS™™, op);
send feply, SS*", res] to clienta;
next «— null;

Figure 7: Pseudocode for a two-round protocol.

guarantees that if the checks succeed, then the system
hasneverviolated ideal consistency up to tine—!.

In the example above, for client the new result list
is (op*, op?, op*), and forb, itis (op', op?, op*). Yet, the
system still delivers fork* consistency at this moment,
just not fork consistency or ideal consistency. However,
fork* consistency forces malicious servers to choose be-
tween showing:’s future operations ta or b, but not
both.

4.1 Fork* consistency examples

In the card-swipe example, fork* consistency has ef-
fectively the same consequences as fork consistency. It
delays revocation and complicates recovery. The only
difference is that after the attack one operation from each
client may appear in both fork sets, so, for example, one
user may get access to a new door in both fork sets, but
no one else will.

In the case of the bank, fork* consistency increases
the potential loss. For example, the attacker can go to
one branch, withdraw $1,000, then go to the other branch
and deposit the $1,000. The attacker can ensure this de-
posit shows up in both fork sets—allowing him to with-
draw an additional $1,000 from the first branch, as well
as the $2,000 he can get from the branch at which he
made the deposit.

In the case of a heart-beat server used to sound an

¢ is only going to accept the reply from one of the fork alarm, fork* consistency doubles the amount of time re-

setsl,(e.g.nga, anfd ﬁdOpt Its new statﬁa,has Its freST' quired to detect a problem, since one increment of the
est knowledge of the system state. If the protocol can counter may show up in both fork sets.

prohibit any correct node that has seen state in one fork
set, namelyF'S,,, from issuing any operations that ex-
ecute in another (e.gf'Sg), then all future operations
from client ¢ can only be applied to servers in fork set In this section, we present BFT2F, an extension of
F'S,, (or subsequent forks df'S,,). the original PBFT protocol [6] that guarantees fork*
Fork* consistency therefore relaxes the no-join prop- consistency when more thgnbut not more thag f out
erty in fork consistency to a join-at-most-once property: of 3f + 1 servers fail in an asynchronous system.
two forked result lists can be joined by at most one op- Like PBFT, BFT2F has replicas proceed through a
eration from thesamecorrect client. succession of numbered configurations calliesvs and
uses a three-phase commit protocol [22] to execute op-
e Join-at-most-once Property:If two result lists ac- erations within views. The three phases pire-prepare
cepted by correct clients contain operatiopSand prepare and commit In view numberview, replica
op from the same correct client, then both result humberview mod 3f + 1 is designated thprimaryand

lists will have the operations in the same order. If has responsibility for assigning a new sequence number
op’ precedesp, then both result lists are identical tg each client operation.

up toop’.

5 BFT2F ALGORITHM

5.1 BFT2F Variables

The join-at-most-once property is still useful for sys-

tem auditing. We can periodically collect all clients’ cur- Below, we describe major new variables and mes-
rent knowledge to check that all have seen each others'sage fields introduced in BFT2F. We use superscripts to
latest operations. Suppose each client issues an operadenote sequence number, egsg™ refers to the mes-
tion for this purpose at timesg, ¢2 ... t"*, wheret™ is the sage with sequence numberWe use subscripts to dis-

time of the latest check. The join-at-most-once property tinguish variables kept at different nodes.

Hash Chain Digest (HCD): A HCD encodes all the 5.2 BFT2F Node Behavior
operations a replica has committed and the com-
mit order. A replica updates its current HCD to be
HCD" = D(D(msg™) o HCD"~1) upon com-
mitting msg™, where D is a cryptographic hash
function ando is a concatenation function. Repli-
cas and clients use HCDs to verify if they have the
same knowledge of the current system state.

In describing BFT2F, we borrow heavily from
PBFT [6]. However, we point out two major differ-
ences between BFT2F and PBFT. First, unlike in PBFT,
BFT2F replicas do not allow out of order commits. This
requirement does not pose much overhead as replicas
must execute client operations in increasing sequence
numbers anyway. Second, BFT2F requires clients to
Hash Chain Digest History: To check if a replica’s wait for at leas2f + 1 matching replies before consid-

current knowledge of the system state is strictly €ring an operation completed, as opposed tofthe 1
fresher than another replica’s and not forked, each matching replies required in PBFT.

replica keeps a history of past HCDs. We denote

replicap’s history entry formsg™ asT),[n]. 5.2.1 Client Request Behavior

Version Vector: Every nodei represents its knowledge A client @ multicasts a request for an operation
of the system state in a version veciar The ver- (request, op,ts,a,cur(V,)) -1 to all the replicas,
sion vector hasf + 1 entries, one for each replica. Where ts is a monotonically increasing timestamp,
Each entry has the forrr, view, n, HCD™) ;. _, cur(V,) is a's last known state of the system, and the
wherer is the replica numbericw is the view ~ Message is authenticated &g signature key/, .
numbery is the highest sequence number thatnode ~ We note that while PBFT uses more efficient MAC
i knows replicar has committed, antf C D™ isr's vectors to authenticate requests from clients, BFT2F re-
HCD aftern operations. The entry is signed b quires public-key signatures. The reason is that faulty
private key K, ~'. We denote replica’s entry in clients may interfere with the replicas’ operation by issu-
V; by V;[r], and use C structure notation to denote ing requests in which some MAC vector entries are valid
fields—i.e.,V;[r].view, V;[r].n, andV;[r]. HC D. and some are invalid. Such a partially correct MAC vec-

tor causes some replicas to accept the request and some
We define several relations and operations on theseo reject it. PBFT can recover from such a situation if
data structures: f + 1 replicas attest to the validity of their MAC vector
entries. However, in BFT2F, we want to avoid executing
illegitimate operations even with- f faulty replicas,
which means it is still not safe to execute an operation
under such circumstances.

e LetV be aversion vector. We definecar function
to represent the current state of the systerif ias
follows: If at leas2 f + 1 entries inV” have the same
nand HC'D values,cur(V) is one of these entries
(e.g_., the one with the lowest replica number). Oth- 522 Server Behavior
erwise,cur(V) = none.

Every server keeps a replay cache containing the last
reply it has sent to each client. Upon receiving a request
(request,op, ts, a, cur(V,)) -1 fromclienta, a server
first checks the signature, then checks that the request is
not a replay. Clients execute one operation at a time, so

e Let h and g be two version vector entries signed
by the same replica. We say dominatesg iff
h.iew > g.view and either the two entries have
identicaln and HC' D fields orh.n > g.n.

e We sayh dominates; with respect thash chain di- if ts is older than the last operation, the server ignores
gest historyT' iff 1 dominatesy and the two entries’ the request. Ifs matches the last operation, the server
HCD fields appear at the appropriate place®in just re-sends its last reply. Otherwise, the server checks

ie., h.HCD = T[h.n] andg.HCD = T|g.n]. In that cur(V;,). HC'D matches the HCD in the last reply
other words, this means thaappears in the history ~ the server sent to the client. If it does not, the client may
T that leads up té. be in a different fork set, or may be malicious and col-
luding with a malicious server. Either way, the server
Whenever a client: sees a version vector enthy ignores this request. Once a message has been validated
signed by replica, it always updates its own version and checked against the replay cache, processing contin-
vectorV, by settingV,[p] < h if h dominates the old ues differently on the primary and other servers.

value ofV, [p]. A serverr similarly updated/,.[p] — h if The primary replica,p, assigns the request a se-
h is recent (e.g., not older than the beginningpf and guence numbern and multicasts apre-prepare
dominates the old; [p] with respect tdr,. messagépre-prepare, p, view, n, D(msg”)>% to all

other replicas. Here,, is either a MAC vector or a sig-
nature withp's private key,K, .

Upon receiving gre-prepare message matching
an accepted request, repligafirst checks that it has
not accepted the same sequence numbéor a dif-
ferent messagensg’” in the same viewview. It also
ensuresn is not too far out of sequence to prevent a
malicious primary from exhausting the sequence num-
ber space. Replicathen multicasts arepare message
(prepare, ¢, view,n, D(msg"))., to all other replicas.

A replica u tries to collect2f matchingprepare

messages (including one from itself) with the same se-

guence numbern as that in the originapre-prepare

message. When it succeeds, we say replidaspre-

paredthe request messagesg™. Unlike PBFT,u does
not commit out of order, i.e., it enters tkemmitphase
only after having prepared the message committed
all requests with lower sequence numbers.

To start committing, replica v computes
HCD" — D(msg™ o HCD" ') and
sets T,[n] — HCD", updates V,[u] to

(u,view,n, HCD") -1, and multicasts acommit
message (commit, (u, view,n, HCD"™), _.) to all
other replicas.

When replicaw receives acommit message from
u with a valid signature and7C D", it updates the
entry for w in its current version vectory,|u], to
(u,view,n, HCD") ;- —1. Replicaw commits msg"™
when it receiveg f+1 matchingcommit messages (usu-
ally including its own) for the same sequence number
and the same HCDHCD™).

Replicaw executes the operation after it has commit-
ted the corresponding request messag@”. It sends a
reply message to the client containing the result of the
computation as well as its current version vector entry
Vw|w]. Sincew has collecte@f + 1 matchingcommit
messages, we know that thexg+ 1 replicas are in the
same fork set up to sequence numher

5.2.3 Behavior of Client Receiving Replies

A reply from replica w has the format,
(reply,a,ts,res, (w,view,n, HCD") - 1),
where view is the current view numberis is the
original request’s timestamp, an@s is the result of

that of at least one correct replica. Clienalso updates
its V[w] to (w,view,n, HCD"), -1 for eachw of
the 2f + 1 replies, ensuring that/ C D™ becomes the
new value ofcur(V,).HCD.

To deal with unreliable communication, cliemt
starts a timer after issuing a request and retransmits if
it does not receive the requir@d + 1 replies before the
timer expires. Replicas discard any duplicate messages
and can also fetch missing requests from each other in
case the client crashes.

5.3 Garbage Collection

If a replicar has been partitioned from the network,
it may have missed some number of successfully exe-
cuted operations and need to learn them from other repli-
cas. For small numbers of missed operations, the replica
can just download the logged operations am@mits
and execute any operation that 25+ 1 commit mes-
sages with appropriate HCDs. However, if other replicas
have truncated their logs,may not be able to download
all missing operations individually. It may instead need
to do a bulk transfer of the entire state of the service
from other replicas. The question then becomes how to
authenticate the state in such a transfer.

In PBFT, » validates the state using stable check-
points gathered every operations (e.g.] = 128).

A stable checkpoint is a collection of signhed messages
from 2f + 1 replicas attesting that the service had hash
D(state™) at sequence. r can then believetate™. In
BFT2F, the signed messages must additionally vouch
that state™ is in the same fork set as and allowr

to bring its replay cache up to date. Our implemen-
tation accomplishes this by having each replica keep
state back ta,,, the lowest version number in its ver-
sion vector. This state may be required for application-
specific recovery from fork attacks anyway. However, it
requires unbounded storage while any replica is unavail-
able, which may be undesirable, so here we outline a
way to achieve fork* consistency with bounded storage.

When replicau signs a checkpoint for sequenegit
includes its version vectdr, in the message. If ne has
V.[w].n < n—2I, then no honest replica will ever ask to
be updated from a state- 21 or older. If, however, there
isaVy[w] < n—21,then, for each such, v includes in

executing the requested operation. A client considersthe checkpoint one of its own old version vector entfies

an operation completed after accepting at legfst- 1
matching replies each of which contains the same
res, n, and HCD"™. (Recall by comparison that PBFT
only requires f + 1 matching replies.) This check

that dominate%, [w] with respect tdl’,. Furthermore, it
keeps enough commit messages around tauglistate
forward fromV,[w].HCD to h.HCD, so thatw can
be assured it is in the same fork set/aslo ensurew

ensures the client only accepts a system state agreedoes not progress beyoihdn, replicas execute no more

upon by at leas2f + 1 replicas. Therefore, if no more

than2I operations beyond the last stable checkpoint that

than2f replicas fail, the accepted system state reflectsshows them up to date.

In detail, u’'s signed checkpoint has the form
(checkpoint, r,n, D(state™), D(rcache™), V,,, E) ;o 1.
Herercache™ is u's replay cache at sequenne(withouut
the signatures or replica numbers, to make it identical at
all unforked replicas)V is u’s current version vector.

E is a set of older values df,[u] computed as follows.
For eachw in which V,, [w].n < n — 2I, E contains
u’s signed version vector entry from the next multiple
of I after V,,[w].n + I. A stable checkpoint consists
of checkpoint messages signed B + 1 different
replicas with the samen, D(state™), D(rcache™),
and £ (modulo the replica IDs and signatures if).
Given a stable checkpoint, can delete log state except
for operations more recent than — 27 and the2/
operations leading up to each elemenfof

When computing a stable checkpoint, it may be
that replicas do not initially agree ofv. However,
each replica updates its version vector using any re-
cent signed entry with a valid HCD in any other
replica’s checkpoint message and multicasts a new
checkpoint message upon doing so. (To ensure the
receiving replica can check the HCD, replicas ignore
commit andcheckpoint messages before the last sta-
ble checkpoint, so that once marked stale in a stable
checkpoint, a replica can only change to being com-
pletely up-to-date.) Note that even after a stable check-
point exists, a replica that was previously shown as out

of date can cause a second stable checkpoint to be gen-
erated for the same sequence number by multicasting a

checkpoint message with its up-to-date version vector.

5.4 Server View Change

In BFT2F, replica r experiencing a
timeout sends a view-change message
(view-change,view + 1, V,.[r], P); -1 to all other
replicas. HeréeV,.[r] is the version vector entry for's
last committed operation, whilB is a set of set#,, for
each prepared messagewith sequence number higher
than n. Each P,, contains thepre-prepare mes-
sage form and2f corresponding matchingrepare
messages.

The primaryp in the new viewview + 1 checks all
signatures (but not MACs) and validates ihér|. HC'D
value inview-change messages it receives. If,[p]
dominatesV;.[r] with respect tdl,, thenV,.[r] is valid.
Otherwise, if V,.[r] dominatesV,[p], thenp requests
from r an operation andf + 1 matchingcommits with

a

We say twoview-change messagesonflictif their
P fields include different operations for the same se-
guence number. This may happen if honest replicas are
forked because of more thghfailures, or if theo au-
thenticators orpre-prepare and prepare messages
have corrupted MAC vectors and malicious replicas
claim to have prepared messages for which they didn't
actually receive gre-prepare and2f + 1 matching
prepares. As long as there ar&f + 1 honest replicas
(without which we cannot guarantee liveness), we will
be in the latter case andwill eventually receive f + 1
valid and non-conflictingriew-change messages (in-
cluding one from itself), at which point it multicasts a
new-view messaggnew-view, view + 1,V,0)k 1.
Here V is the set of2f + 1 valid, non-conflicting
view-change messagesO is a set ofpre-prepare
messages constructed as below:

1. p determinesnin-sas the lowest sequence number
of any version vector entryi{.[r]) in an element of
V. p then determinemax-sas the highest sequence
number of any of thé,, sets in elements of.

For each sequence numberfrom min-sthrough
max-s p either (1) constructs gre-prepare
message in the new view, if &,, in one

of the view-change messages has a valid re-
quest for sequence number, or (2) constructs

a specialnull request((pre-prepare, p, view +
Ln, D(null)) -+, null) to fill in the sequence
number gap.

A backup replicau in the new view validates the
new-view message as follows.checks the version vec-
tor in each element of using the same checksper-
formed upon receiving theiew-change messages. ki
is too far out of date, it may need to do a state transfer.
u also verifies thaO is properly constructed by execut-
ing the same procedure as the primary. lccepts the
new-view message as valid, it sendgpaepare mes-
sage for each message dhand proceeds normally in
the new view.

When there are no more thghfaulty replicas, the
above algorithm is essentially the same as PBFT with
hash chain digests replacing the state hashes in PBFT'’s
checkpoint messages. When more thfabhut no more
than 2f replicas fail, there may be concurrent view
changes in different fork sets. In the worst case when

appropriate HCDs for every sequence number betweer2 f replicas fail, up tof + 1 view changes may succeed

Vplp].n and V,.[r].n. p then executes these operations,
bringingT,, up to date so thdt, [p] dominated/,.[r] with
respect tdl},. If p cannot download the missing opera-
tions fromr, it does a bulk state transfer.

10

concurrently, leading tg + 1 fork sets.

However, with no more tha@f failures, each fork
set is guaranteed to contain at least one honest replica,
r, which ensures fork* consistency. To see this, we con-

The order executed by fork s&tSy:(op*, op?, op*)
| | : | The temporal ordeop®, op?, op®, op*)
The order executed by fork s&tSs:(op!, op®, op*)

Figure 8: Example of two forked result lists. The middle

timeline shows the result list that should have been exe—<
cuted by a non-faulty system. The top timeline shows a

forked result list that does not reflegt®, while the bot-
tom timeline shows another one missing operatiph

sider two cases. First, supposdoes not do a state trans-

shows the second operatiam?, to u and the third op-
eration,op?, to w, but it assigns botlp? andop? the
same sequence numterAs a result, two fork setg'sS,,
and 'Sy are formed, wheré"S,, containsu which has
seen(op!,op?) and F'S; containsw which has seen
opt, op®).

Replicap then manages to join the two forked result
lists for the first time with the operatiasp?; the two re-
sult lists becoméop®, op?, op*) and(op', op?, op*), re-
spectively. Suppose clienggets the requiredf +1 = 3
replies forop* from fork setF'S, = {u,p, q}. Thenc's

fer. Its hash chain digests are then simply the result of Version vector will contaitfCD* = D(op* o D(op® o

processing a sequence of operations in turn. Because
checks thecur(V,) in a client’s request against the last

D(op'))), while replicaw in F'Ss has a different ver-
sion vectorV,, containingHC' D" = D(op* o D(op® o

reply to that client; will never accept a request from D(op'))) (shown in Figure 9 Part (i)). Hereafter, if ma-
an honest client that has executed an operation in anlicious serverg andg try to join the two forked result

other fork set. At worst; may execute the first request a

lists with a another operation hy sayop®, the HC D3

client executes in a different fork set—hence achieving included inc’s request would conflict with that im's

the join at most once property.

On the other hand, if does a state transfer, this re-
quires2f + 1 other replicas to vouch far's new state.
At least one of those f + 1 replicas—call itu—must
also be honest and iris fork set. Sinceu is honest, it
ensures that any operationskips executing because of
the state transfer do not violate fork* consistency.

5.5 An Example

replay cache (Figure 9 Part (ii)).

5.6 Discussion

Ideal consistency requir@giorum intersectionany
two quorums should intersect in at least one non-faulty
replica. Fork* consistency requires orgyiorum inclu-
sion any quorum should include at least one non-faulty
replica. BFT2F uses quorums of sizg+1. However, as
depicted in Figure 1, this can be generalized to a param-

We demonstrate the join-at-most-once property of eterized BFT protocol that ensures quorum inclusion

BFT2F during normal case operation using a simple ex-

up toz failures with quorums of size + 1. With 3 + 1

ample. As in the example from Section 3, the system replicas, any two quorums of size+ 1 must overlap

consists of four replicas, p, ¢, w, with p being the pri-
mary in the current view and the two replicas; being
malicious.

First we explain the intuition for why the join-at-

in at least2(z + 1) — (3f + 1) = 2z — 3f + 1 repli-
cas, which guarantees quorum intersection ujxte 3 f
failures. Unfortunatelyguorum availability or liveness,
requires that there actually he+ 1 replicas willing to

most-once property can be achieved with a one-roundparticipate in the protocol, which is only guaranteed up
protocol. Suppose the system is forked into two fork setsto 3f + 1 — (z + 1) = 3f — « failures.

between two operationg' andop* issued successively
by clientc. Thenc's second operatiomp?, might show
up in two fork sets because the HCINcludes in the re-
quest forop* is taken from the reply top*, on which all
replicas agreed. However, the replieaccepts forop*
can only come from one or the other of the fork sets.
Any subsequent operatianissues will only be valid in
that particular fork set.

Now we consider this example in detail: clients-
sues the firstdp') and fourth operationop?), and some
other clients issue the secongpt) and third pp3) op-
erations. The result listop*, op?, op?, op*) would have

BFT2F setsx = 2f. When up tof replicas fail, this
provides quorum intersection. Because any two quorums
share a non-faulty replica, the protocol can guarantee
that any operation executed in one quorum is reflected in
every subsequent quorum, just as in PBFT. When more
than f but no more thar2f replicas fail, the quorums
become fork sets. Quorum inclusion ensures at least one
honest replica in each fork set. The honest replica in turn
ensures that the quorum only executes legitimate opera-
tions and enforces join at most once, but it cannot guar-
antee ideal consistency or liveness.

BFT2F aims for full compatibility with PBFT and,

reflected the order assigned in an otherwise non-faultysubject to PBFT’s liveness guarantees, an optimal guar-
system, as shown in Figure 8. The malicious primary, antee beyond replica failures. Another potentially use-

p, assigns sequence numkdeto c’s first operationop?
and shows it to all other replicas. Subsequentlignly

11

ful construction is BFT3F, withv = 3f. BFT3F re-
quires each quorum to be of si2¢ + 1—i.e., to contain

(view number and signatur@
are not shown iiv.)

cur(Ve) =|p,3, HCD

\

Voo 3 HOD?] e
p,3, HCD? gj /@ u,3, HCD? HCD check successful
0.3 HCD% | 5 |
! \
w, 1, HOD 2 | D
B‘ . R R T] L I I) L B R]
“‘{/I@\} %(message dropped
{ {
‘@\ @[E 4,3, HCD ! HCD check “successful”
. . \‘ /. r """"""""" 5 S N
R T (e B Ry ,
SHODU S o | W3 HCDT | HCD check failed
0,3, HOD| B (W) T b
BIHCDY TN
commit phase foop? reply phase fobp* request phase fap®- - preprepare phase fop®
Part (i) Part (i)

Figure 9: Example of the join-at-most-once propesy* is used to join two forked result lists as in Figure 8. Part (i)
showsop*’s commit and reply phases. Since the result lists havedyrbaen forked, honest replicas in the two fork
sets have different HCD histories by sequence nuribet’,[3] = HCD? for u andT,,[3] = HCD" for w—and
thus include different HCDs in their replies. Clienaccepts the reply from fork sétS,, and update¥,. accordingly.

(c might detect a Byzantine failure upon seeing divergent reply inf'S3, but here the network drops the message.)
Part (i) shows that no future operation frangcan execute it#’ Sz, sinceH C D* won’'t matchw’s last reply toc.

every replica in the system. This has two implications. 6.1 Implementation

First, since onlyonefork set can be formed, ideal con- i »

sistency will be achieved with up 8 failures. Second, BFT2F's additional guarantee over BFT [6] to al-
the system will lose liveness with even one unrespon-'OW detection of past consistency violations comes at

sive replica, because no quorum can be formed undefthe expense of much increased use of computationally

such circumstances. A system may want to use BET3EEXPensive public key signatures instead of the symmet-
if safety is the highest priority. ric session-key based Message Authentication Codes

Both SUNDR [11] and BFT2F use version vectors (MACs) used by PBFT. We use NTT's ESIGN with key

to represent a node’s knowledge of the current systemIength 0f2048 bits n BFT2F. On a 3 GHZ P4, it takes
state, with one major difference. SUNDR'’s version vec- 150.’“‘5 to generate sugngtures, 108to verify. For com-
tors have one entry per client, while BET2F's use one perpar|son,1280-b|t_ Rabin signatures take 3.1 ms to gener-
server. This difference brings BFT2F two advantages.ate’ 27psto yerlfy.)

First, BFT2F’s version vectors are smaller, since there Al @xperiments run on four machines; three 3.0 GHz
are typically fewer replicas than clients. Second, in both P4 machines and a 2.0 GHz Xeon machine. Clients run
protocols, a node does not see any updates for versiorPn @ different set of 2.4 GHz Athlon machines. All ma-
vector entries of nodes in a different fork set. In SUNDR, Cchines are equipped with 1-3 GB memory and connected
a stagnant entry could innocently signify that a client is Via @ 100 Mbps Ethernet switch. Performance results are
simply offline or idle, both legitimate states. In contrast, "€Ported as the average of three runs. In all cases, stan-
BFT2F’s replica servers should always remain online to dard deviation is less the% of the average value.
process operations, so that a stagnant version vector en-

try is a good indication of failure. 6.2 Micro benchmark

Our micro benchmark is the built-simpleprogram
in BFT, which sends aull operation to servers and
We built a prototype implementation of the BFT2F waits for the reply. Appending version vector entries in
algorithm on FreeBSD 4.11, based on our ported versionrequest andreply messages has the most impact to
of the BFT [6] library. the slowdown of BFT2F, compared to BFT.

6 PERFORMANCE

12

Table 1: Latency comparison of BFT and BFT2F (in mil-

liseconds).

6.3 Application-level benchmark

We modify NFS to run over BFT2F, and compare

it to the native BSD NFSv2, NFS-BFT running an
servers, and SUNDR (NVRAM mode) running dn

reg/rep(KB) | BFT | BFT(ro) | BFT2F | BFT2F(ro) | run BFT on their core servers. HQ replication [8] uni-
0/0 1.027| 0.200 | 2.240 0.676 fies the quorum and state machine approaches by op-
0/4 1.029| 0.778 | 2.242 1.600 erating in a replicated state machine mode during high
4/0 4.398| 3.486 5.647 3.942 contention and in quorum mode during low contention.

Some work has been done to harden BFT systems
against the probability of more thghsimultaneous fail-
ures. Proactive recovery [7] weakens the assumption of
no more thanf faulty replicas during the lifetime of
the service to no more thahfailures during a window
of vulnerability. It achieves this by periodically reboot-
ing replicas to an uncompromised state. However, it’s
behavior is still completely undefined when more than

server. The evaluation takes five phases: (1) copy a soft-f replicas fail in a given window. Furthermore, some
ware distribution packageano-1.2.5.tar.gz int0 problems such as software bugs persist across reboots.
the file system, (2) uncompress it in place, (3) untar the BASE [20] aims to reduce correlated failures. It abstracts
package, (4) compile the package, (5) clean the build ob-we|l-specified state out of complex systems, and thus re-

jects. duces the chances of correlated software bugs by allow-
ing the use of different existing mature implementations
NFSv2 | NFS-BFT | NFS-BFT2F| SUNDR of the same service.

P1 0.302 0.916 1.062 0.299 By separating execution replicas from agreement
P2 1.161 3.546 4.131 0.520 replicas [24], one can tolerate more failures within exe-
P3 2.815 4.171 5.666 1.668 cution replicas or reduce replication cost. BAR [3] takes
P4 | 3.937 4.296 4.922 3.875 advantage of the fact that selfish nodes do not fail in
PS 0.101 0.778 1.707 0.361 completely arbitrary ways. Dynamic Byzantine quorum

Total | 8.316 13.707 17.488 6.723 systems [4] can adjust the number of replicas to tolerate

varying f on the fly, based on the observation of system
Table 2: Performance comparison of different file system behavior.

implementations (in seconds). Securing event history has been studied in the sys-

tems like timeline entanglement [15], which takes the

As Tabl_e 2 shows, the appli_cation—level perf_ormance hash chain approach as in BFT2F, and in [17, 23], which
slowdown in NFS-BFT2F relative to NFS-BFT is much ;se version vectors to reason about partial ordering.

less than that observed in our micro benchmark. This
is because the high cost of public key operations and
transferring version vector entries accounts for a smaller
fraction of the cost to process requests. Both BFT2F and
NFS-BFT achieve much lower performance than NFSv2
and SUNDR, reflecting the cost of replication.

8 CONCLUSION

Traditional BFT algorithms exhibit completely arbi-
trary behavior when more thghout of3 f 41 servers are
7 R compromised. A more graceful degradation could im-

ELATED WORK prove security in many settings. We propose a weak con-

Byzantine fault tolerant systems generally fall into sistency model, fork* consistency, for BFT systems with
two categories: replicated state machines [21] andlarger numbers of failures. Fork* consistency prevents
Byzantine quorum systems [12, 13, 14, 25]. PBFT and clients from seeing the effects of illegitimate operations
BFT2F build on replicated state machines. By contrast, and allows detection of past consistency violations. We
Quorums have simpler construction and are generallypresent a new algorithm, BFT2F, based on PBFT, that
more scalable [1]. However, quorums usually provide provides the same guarantees as PBFT when no more
only low-level semantics, such as read and write, which than f replicas fail, but offers fork* consistency with
makes building arbitrary applications more challeng- up to 2f faulty replicas. While BFT2F does not guar-
ing. Quorums also exhibit poor performance under con- antee liveness in the latter situation, denial of service is
tention. Replicated state machines generally deal withfar preferable to arbitrary behavior for most applications
contention more efficiently, but scale poorly to larger Evaluation of our prototype BFT2F implementation sug-
numbers of replicas. Many other BFT systems [18, 10, 5] gest its additional guarantees come with only a modest
take this approach. Some wide area file systems [19, 2]performance penalty.

13

ACKNOWLEDGMENTS

We thank Michael Freedman, Jinyang Li, Antonio

[12]

Nicolosi, Junfeng Yang, Jinyuan's thesis committee, the ;3
anonymous reviewers, and our shepherd Barbara Liskov,

for comments on the paper, as well as the National Sci-

ence Foundation for support under grants CCR-0093361[14]
and CNS-0430425.

REFERENCES

(1]

[2

13

[4

5

[6

[7

(8]

[9

[10]

(1]

Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Gools
Michael K. Reiter, and Jay J. Wylie. Fault-scalable Byzzeti
fault-tolerant services. IRroceedings of the 20th ACM Sympo-
sium on Operating Systems Principlggges 59-74, Brighton,
United Kingdom, October 2005. ACM.

Atul Adya, William J. Bolosky, Miguel Castro, Gerald Gaak,
Ronnie Chaiken, John R. Douceur, Jon Howell, Jacob R. Lorch,
Marvin Theimer, and Roger P. Wattenhofer. FARSITE: Feder-
ated, available, and reliable storage for an incompletelstéd
environment. InProceedings of the 5th Symposium on Operat-
ing Systems Design and Implementatipages 1-14, December
2002.

Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Michlae
Dahlin, Jean-Philippe Martin, and Carl Porth. BAR fault-tol
erance for cooperative services. oceedings of the 20th
ACM Symposium on Operating Systems Princiglages 45-58,
Brighton, United Kingdom, October 2005. ACM.

Lorenzo Alvisi, Dahlia Malkhi, Evelyn Pierce, Michael.kRke-
iter, and Rebecca N. Wright. Dynamic Byzantine quorum sys-
tems. InProceedings of the the International Conference on De-
pendable Systems and Networks (FTCS 30 and DCCpages
283-292, June 2000.

Christian Cachin and Jonathan A. Poritz. Secure intmusi
tolerant replication on the internet. Rroceedings of the 2002
International Conference on Dependable Systems and Niegwor
pages 167-176, 2002.

Miguel Castro and Barbara Liskov. Practical Byzantiaelf tol-
erance. IrProceedings of the 3rd Symposium on Operating Sys-
tems Design and Implementatiqggages 173—-186, New Orleans,
LA, February 1999.

Miguel Castro and Barbara Liskov. Proactive recoveryain
Byzantine-fault-tolerant system. Rroceedings of the 4th Sym-
posium on Operating Systems Design and Implementgiages
273-288, San Diego, CA, October 2000.

James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Ro-
drigues, and Liuba Shrira. HQ replication: A hybrid quorum
protocol for Byzantine fault tolerance. Rroceedings of the 7th
Symposium on Operating Systems Design and Implementation
pages 177-190, Seattle, WA, November 2006.

Maurice P. Herlihy and Jeannette M. Wing. Linearizapilia
correctness condition for concurrent objed€M Transactions
on Programming Languages Systerh®(3):463—-492, 1990.

Kim Potter Kihlstrom, L. E. Moser, and P. M. Melliar-Smithhe
SecureRing group communication systéx@M Transactions on
Information and System Securif(4):371-406, 2001.

Jinyuan Li, Maxwell Krohn, David Magres, and Dennis
Shasha. Secure untrusted data repository (SUNDR)Prdn
ceedings of the 6th Symposium on Operating Systems Design an
Implementationpages 121-136, December 2004.

14

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Dahlia Malkhi and Michael Reiter. Byzantine quorum t&ys.
In Proceedings of the ACM Symposium on Theory of Computing
pages 569-578, El Paso, TX, May 1997.

Dahlia Malkhi and Michael Reiter. Secure and scalablg@ica-
tion in Phalanx. InProceedings of the 7th IEEE Symposium on
Reliable Distributed Systemgages 51-58, October 1998.

Dahlia Malkhi, Michael K. Reiter, Daniela Tulone, andidgha
Ziskind. Persistent objects in the Fleet systemPtaceedings
of the 2nd DARPA Information Survivability Conference amd E
position (DISCEX 11) 2001.

Petros Maniatis and Mary Baker. Secure history preg@m
through timeline entanglement. IRroceedings of the 11th
USENIX Security Symposiu®an Francisco, CA, August 2002.

David Mazeres and Dennis Shasha. Building secure file systems
out of Byzantine storage. Rroceedings of the 21st Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting pages 108-117, July 2002. The full version is available
as NYU computer science department technical report TR2002-
826, May 2002.

Michael Reiter and Li Gong. Securing causal relatigpshn
distributed systems. The Computer Journal38(8):633-642,
1995.

Michael K. Reiter. The Rampart toolkit for building hiigitegrity
servicesLecture Notes in Computer Science 988ges 99-110,
1994.

Sean Rhea, Patrick Eaton, and Dennis Geels. Pond: The
OceanStore prototype. I8nd USENIX conference on File
and Storage Technologies (FAST '0Sgan Francisco, CA, April
2003.

Rodrigo Rodrigues, Miguel Castro, and Barbara LisSKkBXSE:
Using abstraction to improve fault tolerance. Pnoceedings

of the 18th ACM Symposium on Operating Systems Pringiples
pages 15-28, Chateau Lake Louise, Banff, Canada, October
2001. ACM.

Fred B. Schneider. Implementing fault-tolerant sersices-
ing the state machine approachACM Computing Surveys
22(4):299-319, December 1990.

Dale Skeen. Nonblocking commit protocols. Fnoceedings of
the 1981 ACM SIGMOD International Conference on Manage-
ment of DataAnn Arbor, MI, April 1981.

Sean W. Smith and J. D. Tygar. Security and privacy fotiglar
order time. InProceedings of the ISCA International Conference
on Parallel and Distributed Computing Systerpsiges 70-79,
Las Vegas, NV, October 1994.

Jian Yin, Jean-Philippe Martin, Arun Venkataramanirémzo
Alvisi, and Mike Dahlin. Separating agreement from exeautio
for Byzantine fault tolerant services. Rroceedings of the 19th
ACM Symposium on Operating Systems Princigleges 253—
267, Bolton Landing, NY, October 2003. ACM.

Lidong Zhou, Fred B. Schneider, and Robbert van Renesse
COCA: A secure distributed on-line certification authar&CM
Transactions on Computer Systeri§(4):329-368, November
2002.

