
Administrivia

• Submit paper writeups in plain text

- No attachments. No .doc, .pdf, .rtf, HTML, etc.

• Presentation assignments going out tomorrow

• Email: mfreed+cos518@cs.princeton.edu

• Question: Cut some older papers for more recent?

Schedule for Sept 20, 2007

• Today (MJF)

- Review basic system programming

- Thanks to David Mazières for slides and examples

- Discuss receive livelock paper

• Tuesday (MJF)

- Review programming with threads and events

- Flash: Async I/O (events) + process pools

- Tame: Simplifying event-based programming

• Thursday

- RPCs + Remote Objects (One of you)

- Review SUN-RPC (MJF)

System calls

• Problem: How to access resources other than CPU

- Disk, network, terminal, other processes

- CPU prohibits instructions that would access devices

- Only privileged OS “kernel” can access devices

• Applications request I/O operations from kernel

• Kernel supplies well-defined system call interface

- Applications set up syscall arguments and trap to kernel

- Kernel performs operation and returns result

• Higher-level functions built on syscall interface

- printf, scanf, gets, etc. all user-level code

I/O through the file system

• Applications “open” files/devices by name

- I/O happens through open files

• int open(char *path, int flags, ...);

- flags: O RDONLY, O WRONLY, O RDWR

- O CREAT: create the file if non-existent

- O EXCL: (w. O CREAT) create if file exists already

- O TRUNC: Truncate the file

- O APPEND: Start writing from end of file

- mode: final argument with O CREAT

• Returns file descriptor—used for all I/O to file

Error returns

• What if open fails? Returns -1 (invalid fd)

• Most system calls return -1 on failure

- Specific kind of error in global int errno

• #include <sys/errno.h> for possible values

- 2 = ENOENT “No such file or directory”

- 13 = EACCES “Permission Denied”

• perror function prints human-readable message

- perror ("initfile");

→ “initfile: No such file or directory”

Operations on file descriptors

• int read (int fd, void *buf, int nbytes);

- Returns number of bytes read

- Returns 0 bytes at end of file, or -1 on error

• int write (int fd, void *buf, int nbytes);

- Returns number of bytes written, -1 on error

• off t lseek (int fd, off t pos, int whence);

- whence: 0 – start, 1 – current, 2 – end

- Returns previous file offset, or -1 on error

• int close (int fd);

• int fsync (int fd);

- Guarantee that file contents is stably on disk

File descriptor numbers

• File descriptors are inherited by processes

- When one process spawns another, same fds by default

• Descriptors 0, 1, and 2 have special meaning

- 0 – “standard input” (stdin in ANSI C)

- 1 – “standard output” (stdout, printf in ANSI C)

- 2 – “standard error” (stderr, perror in ANSI C)

- Normally all three attached to terminal

• Example: type.c

The rename system call

• int rename(const char *from, const char *to);

- Changes name to to reference file from

- Removes file name from

- Returns 0 on success, -1 on error

• Guarantees that to will exist despite any crashes

- to may still be old file

- from and to may both be new file

- but to will always be old or new file

• fsync/rename idiom used extensively

- E.g., emacs: Writes file .#file#

- Calls fsync on file descriptor

- rename (".#file#", "file");

Creating processes

• int fork (void);

- Create new process that is exact copy of current one

- Returns process ID of new proc. in “parent”

- Returns 0 in “child”

• int waitpid (int pid, int *stat, int opt);

- pid – process to wait for, or -1 for any

- stat – will contain exit value, or signal

- opt – usually 0 or WNOHANG

- Returns process ID or -1 on error

Deleting processes

• void exit (int status);

- Current process ceases to exist

- status shows up in waitpid (shifted)

- By convention, status of 0 is success, non-zero error

• int kill (int pid, int sig);

- Sends signal sig to process pid

- SIGTERM most common value, kills process by default

(but application can catch it for “cleanup”)

- SIGKILL stronger, kills process always

Running programs

• int execve (char *prog, char **argv, char **envp);

- prog – full pathname of program to run

- argv – argument vector that gets passed to main

- envp – environment variables, e.g., PATH, HOME

• Generally called through a wrapper functions

• int execvp (char *prog, char **argv);

- Search PATH for prog

- Use current environment

• int execlp (char *prog, char *arg, ...);

- List arguments one at a time, finish with NULL

• Example: minish.c

Manipulating file descriptors

• int dup2 (int oldfd, int newfd);

- Closes newfd, if it was a valid descriptor

- Makes newfd an exact copy of oldfd

- Two file descriptors will share same offset

(lseek on one will affect both)

• int fcntl (int fd, F SETFD, int val)

- Sets close on exec flag if val = 1, clears if val = 0

- Makes file descriptor non-inheritable by spawned programs

• Example: redirsh.c

Pipes

• int pipe (int fds[2]);

- Returns two file descriptors in fds[0] and fds[1]

- Writes to fds[1] will be read on fds[0]

- When last copy of fds[1] closed, fds[0] will return EOF

- Returns 0 on success, -1 on error

• Operations on pipes

- read/write/close – as with files

- When fds[1] closed, read(fds[0]) returns 0 bytes

- When fds[0] closed, write(fds[1]):

- Kills process with SIGPIPE, or if blocked

- Fails with EPIPE

• Example: pipesh.c

