
Lecture 8 - Message Authentication Codes

Benny Applebaum , Boaz Barak

October 12, 2007

Data integrity Until now we’ve only been interested in protecting secrecy of data. However, in
many cases what we care about is integrity.

Maintaining integrity is about preventing an adversary from tampering with the data that
was sent or stored by the legitimate users. For example, often people are not worried so
much about secrecy of their email, but they definitely want to be assured that the email they
received was indeed the one being sent.

Encryption and integrity Does encryption guarantee integrity? It might seem at first that yes:
if an attacker can’t read the message, how can she change it?

However, this is not the case. For example, suppose that we encrypt the message x with the
PRF-based CPA-secure scheme to 〈r, fs(r)⊕x〉. The attacker can flip the last bit of fs(r)⊕x
causing the receiver to believe the sent message was x1, . . . , xn−1, xn.

Checksums etc. A common device used for correcting errors is adding redundancy or checksums.
A simple example is adding to x as a last bit the parity of x, that is

∑
i xi (mod 2).1 When

receiving a message, the receiver checks the parity, and if the check fails, considers the message
corrupted (and if appropriate asks to resend it). This works against random errors but
not against malicious errors: the attacker can change also parity check bit. In fact, as we
saw above, the attacker can do this even if the message (including the parity check bit) is
encrypted.

Message Authentication Codes (MAC) The cryptographic primitive that we use for this is
a message authentication code (MAC). A message authentication code (MAC) consists of
two algorithms (Sign,Ver) (for signing and verifying). There is a shared key k between the
signer and the verifier. The sender of a message x computes s = Signk(x), s is often called a
signature or a tag. Then, it sends (x, s) to the receiver. The receiver accepts the pair (x, s)
as valid only if Verk(x, s) = 1.

Security for MACs We define a MAC secure if it withstands a chosen message attack. (Notation:
n - key length, m - message length, t - tag length)

Definition 1 (CMA secure MAC). A pair of algorithms (Sign,Ver) (with Sign : {0, 1}n ×
{0, 1}m → {0, 1}t, Ver : {0, 1}n × {0, 1}m × {0, 1}t → {0, 1}) is a (T, ε)-CMA-secure MAC if:

Validity For every x, k, Verk(x,Signk(x)) = 1.

Security For every T -time Adv, consider the following experiment:
1Sometimes this is generalized to more bits, say, parity mod 216.

1



• Choose k ←R {0, 1}n

• Give adversary access to black boxes for Signk(·) and Verk(·).
• Adversary wins if it comes up with a pair 〈x′, s′〉 such that (a) x′ is not one of the

messages that the adversary gave to the black box Signk(·) and (b) Verk(x′, s′) = 1.

Then the probability Adv wins is at most ε.

Naturally, we define (Sign,Ver) to be CMA-secure if for every n it is (T (n), ε(n))-CMA-secure
for super-polynomial T, ε. In other words, there is no polynomial-time Adv that succeeds with
polynomial probability to break it.

Example As discussed above, the following are not MACs:

• A CPA-secure encryption scheme.

• A cyclic redundancy code (CRC)

Construction for a message authentication code. We prove the following theorem:

Theorem 1. Let {fk} be a PRF. Then the following is a MAC:

• Signk(x) = fk(x).

• Verk(x, s) = 1 iff fk(x) = s.

Proof. We prove this in the typical way we prove constructions using PRFs are secure: we
define an ideal MAC scheme that uses a truly random function, prove it secure, and then
derive security for our real scheme.

Proof of security for ideal scheme. Let A be an adversary running a chosen-message
attack against the ideal scheme. At the end of the attack it outputs a string x′ that was not
asked by it before from the signing oracle and some supposed tag t′. Since this is a random
function, we can think of the oracle at this point choosing the tag t for x′ at random and we
have that Pr[t = t′] = 2−n.

Using Authentication to get CCA security As we saw last time, CPA secure encryption is
not always strong enough. For this purpose we defined CCA security as follows:

Definition 2 (CCA security). An encryption (E,D) is said to be (T, ε)-CCA secure if it’s
valid (Dk(Ek(x)) = x) and for every T -time A if we consider the following game:

• Sender and receiver choose shared k ←R {0, 1}n.

• A gets access to black boxes for Ek(·) and Dk(·).
• A chooses x1, x2.

• Sender chooses i←R {1, 2} and gives A y = Ek(xi).

• A gets more access to black boxes for Ek(·) and Dk(·) but is restricted not to ask y to
the decryption box. More formally, A gets access to the following function D′k(·) instead
of Dk(·)

2



D′k(y′) =

{
Dk(y′) y′ 6= y

⊥ y′ = y

(⊥ is a symbol that signifies “failure” or “invalid input”)

• A outputs j ∈ {1, 2}.

A is successful if j = i, the scheme is (T, ε) secure if the probability that A is successful is at
most 1

2 + ε.

Order of Encryption and Authentication A natural approach to get CCA security is to add
authentication. There are three natural constructions:

• Encrypt and then Authenticate (EtA): Compute y = Ek(x) and ty = Signk′(y) and send
(y, ty). (IPSec-style)

• Authenticate and then Encrypt (AtE): Compute tx = Signk′(x) and then Ek(tx). (SSL
style)

• Encrypt and Authenticate (E& A): Compute y = Ek(x) and tx = Signk′(x) and send
(y, tx). (SSH style)

(Don’t encrypt is WEP-style) Note that in all these methods we use independent keys for
encryption and authentication.

It turns out that generically there is only one right choice.

Theorem 2.

1. If (E,D) is CPA-secure and (Sign,Ver) is CMA-secure then the the EtA protocol gives a
CCA secure encryption scheme.

2. There is a CPA-secure encryption such that for every CMA-secure MAC the AtE protocol
is not a CCA secure encryption scheme.

3. There is a CMA-secure MAC such that for every CPA-secure encryption, the AtE pro-
tocol is not a CCA secure encryption scheme.

Note: This does not by itself mean that, say, SSL is not secure. But it does mean that it is
not generically secure. That is, the SSL protocol relies on specific (and not explicitly stated)
properties of the encryption scheme used.

This theorem and its proof can be found in Hugo Krawczyk’s CRYPTO 2001 paper “The
order of encryption and authentication for protecting communications (Or: how secure is
SSL?)”, see http://eprint.iacr.org/2001/045.

Construction of a CCA secure scheme. We’ll now show how to construct a CCA-secure en-
cryption scheme. That is, we prove the following theorem:

Theorem 3. Assuming Axiom 1, there exists a CCA secure (private key) encryption scheme.

3



Proof. The proof is actually to use the EtA construction, assuming some extra condition on
the MAC (which is satisfied by the PRF-based construction). We say that a MAC has unique
signatures if for every x there’s at most one tag t such that Verk(x, t) = 1. This is equivalent
to saying that Verk(x, t) outputs 1 if and only if t = Signk(x, t) (note that this is how Ver
worked in the PRF-based construction). Let (Sign,Ver) be such a MAC and let (E′,D′) be a
CPA-secure scheme. Our CCA-secure scheme (E,D) will be the following:

• Key: 〈k, k′〉 with k, k′ ←R {0, 1}n.

• Encryption: To encrypt x compute y = Ek(x), t = Signk′(y) and send 〈y, t〉.
• Decryption: To decrypt 〈y, t〉 first verify that Verk′(y, t) = 1, otherwise abort (i.e., output
⊥). If check passes, compute Dk(y).

Security: Suppose that A is a T -time algorithm attacking the encryption scheme (E,D).
We’ll convert A to an algorithm A′ that breaks the CPA-secure scheme (E,D).

First, we need to remember what does it mean to have a CPA attack against (E′,D′). The
algorithm A′ gets black-box access to E′k(·) but not to D′k(·). The algorithm A′ will do the
following:

• Choose k′ ←R {0, 1}n.

• Run A in “its belly”

• Whenever A asks for an encryption of x, pass the request to the encryption box E′k to
obtain y = E′k(x), compute t = Signk′(y) and give 〈y, t〉 to A′. Also record this query in
a table.

• If A asks for a decryption of 〈y, t〉 which was previously returned to it as an encryption
of x then return x to A.

• If A asks for a decryption of 〈y, t〉 which was not previously returned to from the en-
cryption oracle, then check if Verk′(y, t) = 1. If check fails then return ⊥ to A. If check
succeeds then abort the computation. In this case we say that A′ failed to simulate A.

• When A sends the challenge x1, x2 pass it on to the sender to obtain y = E′k(xi) and
give 〈y, t〉 to A, where t = Signk′(y).

• When A outputs a guess j, output the same guess j.

We see that the only case that A′ fails to simulate the CCA attack of A is when A manages
to produce a pair 〈y, t〉 such that

1. 〈y, t〉 was not obtained as a previous response to a query x of the encryption oracle.

2. 〈y, t〉 is not the encryption of the challenge.

3. V erk′(y, t) = 1

However, if A does that then he breaks the MAC. Indeed, because of the unique signatures
property of the MAC, Properties 1 and 2 imply that y was not previously signed by the MAC,
and hence it should not be possible for A to find a t such that Verk′(y, t) = 1.

Note that the unique signatures property is indeed crucial. Suppose that the MAC had the
property that it had an “extra unused bit”. That is, the tag is of the form t ◦ b where b is

4



a single bit, but verification only looks at the tag t. Thus, Verk′(y, t0) = 1 if and only if
Verk′(y, t1) = 1.

In this case the encryption scheme will be clearly not CCA secure. (If the adversary gets the
challenge 〈y, t0〉 it will give 〈y, t1〉 to the decryption oracle.) This sensitivity of CCA security
to extra unused bits is one reason why some people feel CCA security is a bit too strong,
but the research community has yet to find a clean definition that is still sufficient for all the
applications of CCA security.

5


