
Lecture 18 - Secret Sharing, Visual Cryptography, Distributed

Signatures

Boaz Barak

November 27, 2007

Quick review of homework 7 Existence of a CPA-secure public key encryption scheme such
that oracle to “correct”/“malformed” ciphertexts yields the secret key.

Key protection In cryptography, security is dependent on the adversary not knowing the secret
key. However, how can we ensure this property? to be used, the key needs to be stored
somewhere, and an adversary might be able, for example, to break into the machine the key
is stored. This is especially crucial for long term keys such as signature keys, that may be
used for many years.

Secret sharing There is no one complete solution to this problem, but there are several crypto-
graphic techniques to tackle it. One of the nicest ones is the idea of secret sharing, originally
suggested by Shamir.

The idea is to split a secret a (which can be a cryptographic key, but can also be any other
piece of information) into n pieces (called shares), such that for t ≤ n (e.g., t = n).

• If an adversary has only t− 1 out of the n shares, then he has absolutely no information
about the secret a.

• Given t shares it is possible to completely reconstruct the secret a.

Note that a solution that is definitely not secure is to just split the secret to consecutive
pieces (i.e., if a ∈ {0, 1}` have the ith share be the bits of a in the (i − 1)n

` to the in` − 1
positions) - can you see why?

Somewhat surprisingly, Shamir was able to construct a very efficient such scheme for any
n and t without relying on any cryptographic assumptions (that is, obtaining information-
theoretic Shannon-like security). Such schemes are called t-out-of-n secret sharing schemes.
An n-out-of-n schemes is a scheme where all n shares are needed to reconstruct, and if even
one share is missing then there’s absolutely no information about the secret.

Shamir’s scheme Given a string a ∈ {0, 1}` and numbers n, t with t < n, we choose d = t − 1
and do the following: (we assume n < 2`, otherwise just increase `)

• Let p be a prime number that is between 2` and 2`+1. Let F the field of numbers
0, . . . , p−1 with operations done modulu p. We can think of a as representing a number
in F. We denote this number by a0.

• Choose independently at random a1, . . . , ad ←R F.

1

• The numbers a0, . . . , ad define a polynomial p : F→ F of degree d in the following way:
p(x) = a0 + a1x+ . . .+ adx

d. Note that p(0) = a0. For every i between 1 and n, define
si = p(i).

• The ith share will be si.

Defining security To prove that this is a secure secret sharing scheme, we prove the following
two lemmas:

Lemma 1. For every a ∈ {0, 1}`, and for every t − 1 positions i1, . . . , it−1, the distribution
of si1 , . . . , sit−1 is the uniform distribution over Ft−1.

This lemma guarantees the secrecy property — it says that no matter what a is, if an adversary
gets only t−1 pieces then the distribution it sees is the uniform distribution — a distribution
that is independent of a and hence gives no information about it.

Lemma 2. There is an efficient algorithm that for every t positions i1, . . . , it can recover a
from si1 , . . . , sit.

This lemma guarantees the reconstruction property. We’ll actually start with the proof of
Lemma 2.

Proof of Lemma 2 We’ll prove an even stronger property: that we can reconstruct the entire
polynomial a0, . . . , ad from the t values. Recall that d is t − 1. Thus, the algorithm is given
d + 1 positions i1, . . . , id+1 ∈ F and the value of the polynomial p(·) in these positions and
needs to reconstruct the d + 1 coefficients of the polynomial p(·). This is the well known
polynomial interpolation problem and there is an efficient algorithm to solve it. (This is a
higher degree generalization of the problem where you’re given two points and need to find
the unique line that passes through these two points.)

The algorithm actually only involves solving linear equations: think of a0, . . . , ad as unknowns.
We are given d+ 1 equations of the form

a0 + a1ij + . . .+ ad(ij)d = yj

for j = 1, . . . , d + 1. We know ij (and hence also know (ij)k for every k) and are given also
yj = p(ij). Thus, these are d + 1 linear equations in d + 1 variables. They have a unique
solution if and only if the determinant of the coefficient matrix is non zero. This is a matrix
where the entry at the jth row and kth column is (ij)k. This is called the Vandermounde
matrix and its determinant is known to be

∏
j 6=j′(ij − ij′) which is non zero since all the ij ’s

are distinct.

Thus, we can solve these equations and find a0, . . . , ad and in particular find a from a0.

Another view of the proof We can in fact obtain a nice (well, OK) expression for the unique d
degree polynomial p such that p(ij) = sj for all j ∈ [d+ 1]:

p(x) =
∑

j∈[d+1]

∏
k 6=j(x− ik)∏
k 6=j(ij − ik)

sj

2

Proof of Lemma 1. This actually follows from the proof of the previous lemma.

Let i1, . . . , it−1 be the d = t−1 positions and define i0 = 0. Let a0 be any number in F. Define
function ga0 : Fd → Fd as follows ga0(a1, . . . , ad) = (p(i1), . . . , p(id)). We claim that ga0 is a
permutation. This will imply the lemma since it means that if a1, . . . , ad are chosen at random
then ga0(a1, . . . , ad) is the uniform distribution (and this is exactly what the adversary sees).

To show ga0(·) is a permutation, it is enough to show an algorithm that inverts it. However,
note that p(0) = a0. Thus, the inverter can simply run the algorithm of the previous lemma
on the d+ 1 values p(0), p(i1), . . . , p(id).

Example 1: PGP key recovery mechanism Pretty Good Privacy is a program to provide en-
crypted email. When writing such a program one is faced with the dilemma of where to
actually store the key. It certainly does not make any sense to store the key in the clear in
a file on a Windows (or also Mac or Linux) computer, where it can be easily read by any
virus/trojan that comes along.1 However, we can not expect the user to remember the key
either, and we can’t assume that they have dedicated hardware (e.g., smartcards) to store
the keys. The solution PGP uses is to have the users remember a very long password p and
to store in the compute H(p)⊕ k (where k is the key and H is a hash function that we think
of as a random oracle).2 However, the user can forget this long password, and in this case
might lose completely all access to his email!

The solution PGP used is the following: the key is shared in a 3-out-of-5 scheme to 5 shares
s1, . . . , s5. The user selects 5 personal questions to which he knows the answers a1, . . . , a5.
The information H(a1)⊕s1 , . . . , H(a5)⊕s5 is stored in the computer.3 If the user remembers
the answers to at least 3 of the questions, he can reconstruct the key.

A simple n-out-of-n scheme There is a different scheme for the special case of n-out-of-n which
is even simpler than Shamir’s scheme: to share a ∈ {0, 1}` choose a1, . . . , an at random
conditioned on a1 ⊕ an = a. For example, you can choose a1, . . . , an−1 independently at
random and choose an = a ⊕ a1 ⊕ · · · an−1. It’s not hard to show that this is indeed an
n-out-of-n scheme.

Application 2: visual cryptography The following is a very cute application of secret sharing,
obtained by Naor and Shamir: you can break an image I into, say, two images I1, I2 such
that neither I1 or I2 provides any information about I, but if the two are superimposed one
on top of the other than I “pops out”.

The idea is the following: each pixel in I will be converted into a 2 × 2 square in I1 and I2.
In I1, we’ll choose at random whether the shape of that square will be like this:

X
X

or like this
X

X

1The fact this does not make any sense does not mean that there are no commercial programs that do this.
2Actually the requirement from H is that it will be a variant of a randomness extractor. Such functions can

be obtained without relying on the random oracle assumption. It might be necessary to protect k with a MAC or
something similar in addition to XORing it with the password (I believe PGP does that).

3Actually, it is stored on a special purpose key reconstruction server, which might be a good idea if the server is
more trusted than the user’s PC, to help prevent dictionary/brute force attacks.

3

In I2, if the corresponding pixel in I is white, we’ll choose the 2 × 2 square to have exactly
the same pattern as I1, and if it’s black we’ll choose it to have the opposite pattern.

Thus, if we superimpose them together, then a white pixel will have one of the two patterns
above, while a black pixel will become

X X
X X

And thus the image will appear (albeit with white pixels converted to gray).

I don’t know of any practical application (although you could perhaps use this to print
sensitive documents in a shared printer environment — note that I1 is independent of I, and
so you can prepare a transparency with I1 ahead of time, and when you want to send a secret
document I to the shared printer, just print I2 instead).

Threshold signatures. Suppose we want to make sure that a signature key stays secure, by
splitting it among, say, 5 servers. Now, how do we actually compute a signature? we can
have the 5 servers send their share to one another to reconstruct the secret key, and then use
it to sign, but if the adversary is eavesdropping while we’re doing this, this can be fatal.

Quite amazingly, it is possible for the servers to jointly compute a signature on a message m
using the secret shared key without reconstructing the secret. We will present a scheme where
` servers can share an RSA signing key such that an adversary that can see the private data
of ` − 1 of the servers. You can see Shoup’s paper on the web site for such a scheme that
works in the general t-out-of-n setting, and is also robust (in the sense we’ll talk about soon).

Public key Choose n = pq at random, choose e at random from {0, . . . , n − 1}. Let H a
random oracle.

Private key Choose d such that d = e−1 (mod φ(n)).

Sharing the private key Choose d1, . . . , d` at random from {0, . . . , n} such that d1 + · · ·+
d` = d (mod φ(n)). The ith server gets di.

Computing a signature To sign a message m, compute x = H(m). The ith server broad-
cast wi = xdi . The signature is y = w1 · · ·w`.
Note that y is a valid RSA signature: y = xd.

Analysis Let A be an adversary that sees the private data of `−1 servers. For simplicity of notation
assume that these are the servers 1, . . . , `− 1. The adversary gets as input d1, . . . , d`−1 which
are statistically close to random independent elements in {0, . . . , n}. It gets to choose messages
m and ask the `th server to provide it with w` = xd` (where x = H(m)) and at the end it
needs to output a new m′ and x′d where x′ = H(m′).

We prove that A will not succeed by simulating A with an adversary A′ that forges the
standard hash-and-sign RSA signature. The adversary A′ gets n and e, and chooses at random
d1, . . . , d`−1 from 0, . . . , n and gives them to the adversary A. When A makes a query m, the
adversary A′ forwards this query to the signing oracle to get xd where x = H(m). It then
computes w` = xdx−d1 · · ·x−d`−1 and gives this to A. This is the same value A sees in its
interaction with the `th server and so A′ has the same success probability as A.

Robustness This analysis was in the so-called honest but curious model, where the adversary only
sees the private data of the other servers but can not actually control their behavior. However,

4

in many cases we’ll want robust protocols that guarantee security even if the adversary can
actively control the corrupted servers.

There are general transformation of protocols that are secure in the honest-but-curious set-
ting to robust protocols using zero-knowledge proofs, but these come at a steep price in
efficiency. There are protocols (often based on special-purpose zero knowledge proofs for spe-
cific languages) that achieve these goals more efficiently. In particular a well known scheme
for robust secret sharing is Feldman’s verifiable secret sharing, while as mentioned above, a
simple and attractive robust signature scheme is Shoup’s. (There are also other, discrete-log
based, robust signature schemes that have the advantage of being dealer-less as explained
below.)

Dealer-less protocols Another drawback of this protocol is that it requires a trusted dealer that
knows the secret and shares it among the servers. In some situations you might want to
ensure that secret was never held at one location, and was generated jointly by the parties.
There are also protocols achieving this goal.

Proactive security When protecting long term keys, you might worry about whether or not the
threshold model makes sense. Suppose that you have 5 servers in different locations. You
might be convinced that at no point an adversary can compromise more than, say, 2 of them,
but it may very well be the case that over the lifetime of the system the adversary might
eventually gain access (at least for a small period of time) to each one of the 5 server. Thus,
if the servers use long term shares, then eventually the adversary will learn all the shares.
The notion of proactive security was invented to obtain protocols that are secure even in
this situation. The idea is that every once in a while the servers run together a distributed
protocol in which they refresh their shares. We can ensure that even if 4 shares suffices to
reconstruct the secret, if an adversary saw the two shares of servers 1 and 2 before the refresh,
and the shares of servers 3 and 4 after the refresh, then he has no information about it.

Shoup’s t out of n signature We now present a simple scheme by Shoup to make the RSA hash-
and-sign signature scheme into a t out of n signature scheme. Note: we follow below Shoup’s
notation, which conflicts with the notation we used above. In particular, we’ll use below n
for the RSA composite instead of the number of parties, which we’ll denote by `. We want
to split the signing key to ` pieces, such that it is possible to perform the signature with t of
them, but not with t− 1.

Public key Choose n = pq for two random large primes satisfying p = 2p′ + 1 and q = 2q′ + 1
for primes p′, q′. Note that φ(n) = (p − 1)(q − 1) = 4p′q′ and so |QRn| = φ(n)/4 = p′q′.
We denote m = p′q′. Note that in this case QRn is a cyclic group (see Shoup’s book for
the reason). In contrast to the usual RSA, we’ll work in QRn instead of Z∗n, which will be
convenient, since it is a cyclic group and also its order has no small factors.

We choose e to be a random element in 1, . . . ,m and let d = e−1 (mod m). The public key
will be (n, e) while the private key (which we’ll share) will be d.

Sharing the private key Let a0 = d and choose at random a1, . . . , ad ∈ {0, . . . ,m}. These define
a polynomial f(·) in Z∗m. That is, f(i) = a0 + a1i+ . . . adi

d (mod m). We define the share si

to be just f(i) (mod m).4

4There needs to be some additional masking to make sure f(i) does not reveal m. For simplicity, let’s assume
that m of size at least 2k−2(1− ε(k)) where k is the number of bits of n and ε(k) = k−ω(1). Otherwise, we can use a
trick from Shoup’s paper.

5

Computing the signature We assume that we have a random oracle H that maps a message α
to x ∈ QRn. (We can obtain this by letting H(α) = H ′(α)2 (mod n).)

The signature on α will be the inverse of the RSA permutation on x. That is, y such that
ye = x (mod n). To compute this using t shares s1, . . . , st corresponding to f(i1), . . . , f(it),
we’ll do the following:

• Define the polynomial f ′(·) as follows:

f ′(z) =
t∑

j=1

∏
j′ 6=j z − j′∏
j′ 6=j j − j′

si

Note that f ′(·) is a degree t− 1 polynomial in z. Over the real numbers, we get that for
every j, f ′(ij) = f(ij). (Indeed, in the summation only one term is non-zero and it is
equal to 1 · f(ij)). However, since both of them are degree t− 1 polynomials, this means
that they are completely equal on all values.

• Define ∆ =
∏

1≤j′ 6=j≤`(j − j′). Note that since m does not have small factors, ∆ ∈ Z∗m.
We know that for every z, and in particular for z = 0, we have that

∆f(z) =
t∑

j=1

∆

∏
j′ 6=j z − j′∏
j′ 6=j j − j′

si

Let wj(z) denote the ith term in this sum. Note that each wj(z) is an integer. Also note
that wj can be easily computed by the jth party.
The jth party will broadcast xwj(0). Together they will compute

y′ =
∏
j

xwj(0) = y′∆·f(0) = x∆d

This is “almost” a signature but not quite. However, we can compute from y′ a proper
signature y. Since gcd(e,∆) = 1, we can find a, b such that a∆ + be = 1. Let y = y′axb.
We see that ye = y′eaxeb = x∆axeb = x1 = x.

Analysis

6

