COS 429: COMPUTER VISON RADIOMETRY (1 lecture)

- Elements of Radiometry
- Radiance
- Irradiance
- BRDF
- Photometric Stereo

Reading: Chapters 4 and 5

Photometric stereo example

data from: http://www1.cs.columbia.edu/~belhumeur/pub/images/yalefacesB/readme

Image Formation: Radiometry

What determines the brightness of an image pixel?

The Illumination and Viewing Hemi-sphere

At infinitesimal, each point has a tangent plane, and thus a hemisphere Ω.

The ray of light is indexed by the polar coordinates (θ, φ)

Foreshortening

- Principle: two sources that look the same to a receiver must have the same effect on the receiver.
- Principle: two receivers that look the same to a source must receive the same amount of energy.
- "look the same" means produce the same input hemisphere (or output hemisphere)

- Reason: what else can a receiver know about a source but what appears on its input hemisphere? (ditto, swapping receiver and source)
- Crucial consequence: a big source (resp. receiver), viewed at a glancing angle, must produce (resp. experience) the same effect as a small source (resp. receiver) viewed frontally.

Measuring Angle

- To define radiance, we require the concept of solid angle
- The solid angle subtended by an object from a point P is the area of the projection of the object onto the unit sphere centered at \mathbf{P}
- Measured in steradians, sr

- Definition is analogous to projected angle in 2D
- If I'm at P, and I look out, solid angle tells me how much of my view is filled with an object

Solid Angle of a Small Patch

- Later, it will be important to talk about the solid angle of a small piece of surface

$$
d \omega=\frac{d A \cos \theta}{r^{2}}
$$

$$
d \omega=\sin \theta d \theta d \phi
$$

DEFINITION: Angles and Solid Angles

$$
\theta=l=\frac{L}{R}
$$

(radians)

$\Omega=a=\frac{A}{R^{2}}$ (steradians)

DEFINITION: The radiance is the power traveling at some point in a given direction per unit area perpendicular to this direction, per unit solid angle.

PROPERTY: Radiance is constant along straight lines (in vacuum).

DEFINITION: Irradiance

The irradiance is the power per unit area incident on a surface.

$\delta^{2} \mathrm{P}=\delta \mathrm{E} \delta \mathrm{A}=\mathrm{L}_{\mathrm{i}}\left(\mathrm{P}, \boldsymbol{v}_{\mathrm{i}}\right) \cos \theta_{\mathrm{i}} \delta \omega_{\mathrm{i}} \delta \mathrm{A}$

Photometry

$$
E=\left[\frac{\pi}{4}\left(\frac{d}{z^{\prime}}\right)^{2} \cos ^{4} \alpha\right] L
$$

- L is the radiance.
- E is the irradiance.

DEFINITION: The Bidirectional Reflectance Distribution Function (BRDF)

The BRDF is the ratio of the radiance in the outgoing direction to the incident irradiance (sr^{-1}).

$$
\begin{aligned}
\mathrm{L}_{\mathrm{o}}\left(\mathrm{P}, \boldsymbol{v}_{\mathrm{o}}\right)= & \rho_{\mathrm{BD}}\left(\mathrm{P}, \boldsymbol{v}_{\mathrm{i}}, v_{\mathrm{o}}\right) \delta \mathrm{E}_{\mathrm{i}}\left(\mathrm{P}, \boldsymbol{v}_{\mathrm{i}}\right) \\
& =\rho_{\mathrm{BD}}\left(\mathrm{P}, \boldsymbol{v}_{\mathrm{i}}, v_{\mathrm{o}}\right) \mathrm{L}_{\mathrm{i}}\left(\mathrm{P}, \boldsymbol{v}_{\mathrm{i}}\right) \cos \theta_{\mathrm{i}} \delta \omega_{\mathrm{i}}
\end{aligned}
$$

Helmoltz reciprocity law: $\rho_{\mathrm{BD}}\left(\mathrm{P}, \boldsymbol{v}_{\mathrm{i}}, \boldsymbol{v}_{\mathrm{o}}\right)=\rho_{\mathrm{BD}}\left(\mathrm{P}, \boldsymbol{v}_{\mathrm{o}}, \boldsymbol{v}_{\mathrm{i}}\right)$

DEFINITION: Radiosity

The radiosity is the total power Leaving a point on a surface per unit area ($\mathrm{W}^{*} \mathrm{~m}^{-2}$).

$$
B(P)=\int_{H} L_{0}\left(P, v_{0}\right) \cos \theta_{0} d \omega
$$

Important case: L_{o} is independent of v_{0}.

$$
\mathrm{B}(\mathrm{P})=\pi \mathrm{L}_{0}(\mathrm{P})
$$

DEFINITION: Lambertian (or Matte) Surfaces

A Lambertian surface is a surface whose BRDF is independent of the outgoing direction (and by reciprocity of the incoming direction as well).

$$
\rho_{\mathrm{BD}}\left(\boldsymbol{v}_{\mathrm{i}}, \boldsymbol{v}_{\mathrm{o}}\right)=\rho_{\mathrm{BD}}=\text { constant. }
$$

The albedo is $\rho_{d}=\pi \rho_{B D}$.

DEFINITION: Specular Surfaces as Perfect or Rough Mirrors

Perfect mirror

Rough mirror

Perfect mirror: $\mathrm{L}_{\mathrm{o}}\left(\mathrm{P}, \boldsymbol{v}_{\mathrm{s}}\right)=\mathrm{L}_{\mathrm{i}}\left(\mathrm{P}, \boldsymbol{v}_{\mathrm{i}}\right)$
Phong (non-physical model): $\mathrm{L}_{\mathrm{o}}\left(\mathrm{P}, \boldsymbol{v}_{\mathrm{o}}\right)=\rho_{\mathrm{s}} \mathrm{L}_{\mathrm{i}}\left(\mathrm{P}, \boldsymbol{v}_{\mathrm{i}}\right) \cos ^{\mathrm{n}} \delta$
Hybrid model: $\mathrm{L}_{\mathrm{o}}\left(\mathrm{P}, \boldsymbol{v}_{\mathrm{o}}\right)=\rho_{\mathrm{d}} \int_{\mathrm{H}} \mathrm{L}_{\mathrm{i}}\left(\mathrm{P}, \boldsymbol{v}_{\mathrm{i}}\right) \cos \theta_{\mathrm{i}} \mathrm{d} \omega_{\mathrm{i}}+\rho_{\mathrm{s}} \mathrm{L}_{\mathrm{i}}\left(\mathrm{P}, \boldsymbol{v}_{\mathrm{i}}\right) \cos ^{\mathrm{n}} \delta$

DEFINITION: Point Light Sources

A point light source is an idealization of an emitting sphere with radius ε at distance R , with $\varepsilon \ll \mathrm{R}$ and uniform radiance L_{e} emitted in every direction.

For a Lambertian surface, the corresponding radiosity is

$$
B(P)=\left[\rho_{d}(P) L_{e} \frac{\pi \varepsilon^{2}}{R(P)^{2}}\right] \cos \theta_{i} \approx \rho_{d}(P) \frac{\mathbf{N}(P) \cdot \mathbf{S}(P)}{R(P)^{2}}
$$

Local Shading Model

- Assume that the radiosity at a patch is the sum of the radiosities due to light source and sources alone.

No interreflections.

- For point sources: $\quad B(P)=\sum_{\text {visible }} \rho_{d}(P) \frac{\mathbf{N}(P) \cdot \mathbf{S}_{s}(P)}{R_{s}(P)^{2}}$
- For point sources at infinity:

$$
B(P)=\rho_{d}(P) \mathbf{N}(P) \cdot \sum_{\text {visibles }} \mathbf{S}_{s}(P)
$$

Photometric Stereo (Woodham, 1979)

Problem: Given n images of an object, taken by a fixed camera under different (known) light sources, reconstruct the object shape.

Photometric Stereo: Example (1)

- Assume a Lambertian surface and distant point light sources.

$$
I(P)=k B(P)=k \rho \mathbf{N}(P) \bullet \mathbf{S}=\mathbf{g}(P) \bullet \mathbf{V} \begin{aligned}
& \text { with } \mathbf{g}(P)=\rho \mathbf{N}(P) \\
& \text { and } \mathbf{V}=k \mathbf{S}
\end{aligned}
$$

- Given n images, we obtain n linear equations in \boldsymbol{g} :

$$
\left.\left.\mathbf{i}=\begin{array}{c}
I_{1} \\
I_{2} \\
\ldots \\
I_{n}
\end{array}\right]=\begin{array}{c}
\begin{array}{c}
\mathbf{V}_{1} \cdot \mathbf{g} \\
\mathbf{V}_{2} \cdot \mathbf{g} \\
\ldots \\
\mathbf{V}_{n \cdot} \cdot \mathbf{g}
\end{array} \\
\hline
\end{array}=\begin{array}{c}
\mathbf{V}_{1}{ }^{T} \\
\mathbf{V}_{2}{ }^{T} \\
\mathbf{V}_{n}{ }^{T}
\end{array}\right\} \mathbf{g} \longrightarrow \mathbf{i}=\mathbf{V} \mathbf{g} \square \mathbf{g}=\boldsymbol{V}^{1} \mathbf{i}
$$

Photometric Stereo: Example (2)

- What about shadows?

- Just skip the equations corresponding to zero-intensity pixels.
- Only works when there is no ambient illumination.

Photometric Stereo: Example (3)

$$
\rho(\mathrm{P})=|\mathbf{g}(\mathrm{P})|
$$

$$
\mathbf{g}(\mathrm{P})=\rho(\mathrm{P}) \mathbf{N}(\mathrm{P})
$$

$$
\mathbf{N}(P)=\frac{1}{|\mathbf{g}(P)|} \mathbf{g}(P)
$$

Photometric Stereo: Example (3)

$$
\begin{array}{r}
\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right) \\
\mathbf{N}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \propto\left[\begin{array}{c}
-\frac{\partial z}{\partial x} \\
-\frac{\partial z}{\partial y} \\
1
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
\frac{\partial z}{\partial x}=-\frac{a}{c} \\
\frac{\partial z}{\partial y}=-\frac{b}{c}
\end{array}\right.
\end{array}
$$

$$
z(u, v)=\int_{0}^{u} \frac{\partial z}{\partial x}(x, 0) d x+\int_{0}^{v} \frac{\partial z}{\partial y}(u, y) d y
$$

Photometric stereo example

data from: http://www1.cs.columbia.edu/~belhumeur/pub/images/yalefacesB/readme

