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1. Visual motion in the Real World

2. The visual motion estimation problem
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5. Progressive complexity and robust model estimation
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Types of Visual Motion

in the

Real World



Simple Camera Motion : Pan & Tilt

Camera Does Not Change Location



Apparent Motion : Pan & Tilt

Camera Moves a Lot



Independent Object Motion

Objects are the Focus
Camera is more or less steady



Independent Object Motion
with

Camera Pan

Most common scenario 
for 

capturing performances



General Camera Motion

Large changes
in

camera location & orientation



Visual Motion due to Environmental Effects

Every pixel may have its own motion



The Works!

General Camera & Object Motions



Why is Analysis and Estimation
of

Visual Motion Important?



Visual Motion Estimation
as a means of extracting

Information Content in Dynamic Imagery
...extract information behind pixel data...

Foreground
Vs.

Background



Information Content in Dynamic Imagery
...extract information behind pixel data...

Foreground
Vs.

Background

Extended Scene 
Geometry



Information Content in Dynamic Imagery
...extract information behind pixel data...

Foreground
Vs.

Background

Extended Scene 
Geometry

Temporal
Persistence

Layers with 2D/3D
Scene ModelsLayers & Mosaics

Layered, Motion, Structure & Appearance Analysis provides
Compact Representation for Manipulation & Recognition of Scene Content

Segment,Track,Fingerprint
Moving Objects



• Pin-hole camera model

• Pure rotation of the camera

• Multiple images related through a 2D projective 
transformation: also called a homography

• In the special case for camera pan, with small frame-to-frame 
rotation, and small field of view, the frames are related 
through a pure image translation

An Example

A Panning Camera



Pin-hole Camera Model
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Camera Rotation (Pan)
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Camera Rotation (Pan)
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Image Motion 
due to 

Rotations
does not depend 

on the 
depth / structure of the scene

Verify the same for a 3D scene and 2D camera



Pin-hole Camera Model
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Camera Translation (Ty)
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Translational Displacement
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Image Motion due to Translation
is a function of

the depth of the scene





Sample Displacement Fields

Render scenes with various motions and plot the 
displacement fields



Motion Field vs. Optical Flow

X
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Motion Field : 2D projections of 3D
displacement vectors due to camera 
and/or object motion 

Optical Flow : Image displacement field
that measures the apparent motion of
brightness patterns



Motion Field vs. Optical Flow

Lambertian ball rotating in 3D 

Motion Field ? 

Optical Flow ? 

Courtesy : Michael Black @ Brown.edu
Image: http://www.evl.uic.edu/aej/488/ 



Motion Field vs. Optical Flow

Stationary Lambertian ball with a
moving point light source 

Motion Field ? 

Optical Flow ? 

Courtesy : Michael Black @ Brown.edu
Image : http://www.evl.uic.edu/aej/488/ 



• Parametric motion models
– 2D translation, affine, projective, 3D pose [Bergen, Anandan, et.al.’92]

• Piecewise parametric motion models
– 2D parametric motion/structure layers [Wang&Adelson’93, Ayer&Sawhney’95]

• Quasi-parametric
– 3D R, T & depth per pixel. [Hanna&Okumoto’91]
– Plane+parallax [Kumar et.al.’94, Sawhney’94]

• Piecewise quasi-parametric motion models
– 2D parametric layers + parallax per layer [Baker et al.’98]

• Non-parametric
– Optic flow: 2D vector per pixel [Lucas&Kanade’81, Bergen,Anandan et.al.’92]

A Hierarchy of Models

Taxonomy by Bergen,Anandan et al.’92



Sparse/Discrete Correspondences

&

Dense Motion Estimation



Discrete Methods

Feature Correlation
&

RANSAC



Visual Motion through Discrete Correspondences

pp′

Images may be separated by 
time, space, sensor types

In general, discrete correspondences 
are related

through a transformation



Discrete Methods

Feature Correlation
&

RANSAC



Discrete Correspondences

• Select corner-like points
• Match patches using Normalized Correlation
• Establish further matches using motion model



Direct Methods for Visual Motion 
Estimation

Employ Models of Motion
and 

Estimate Visual Motion
through

Image Alignment



Characterizing Direct Methods
The What

• Visual interpretation/modeling involves spatio-
temporal image representations directly
– Not explicitly represented discrete features like 

corners, edges and lines etc.

• Spatio-temporal images are represented as 
outputs of symmetric or oriented filters.

• The output representations are typically dense, 
that is every pixel is explained,
– Optical flow, depth maps.
– Model parameters are also computed.



Direct Methods : The How  
Alignment of spatio-temporal images is a means of obtaining :

Dense Representations, Parametric Models



Direct Method based Alignment



Formulation of Direct Model-based 
Image Alignment
[Bergen,Anandan et al.’92]

)p(I1 ′ )p(I2

p)p(up −

Model image transformation as :
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Images separated 
by 

time, space, 
sensor types

Brightness
Constancy



Formulation of Direct Model-based 
Image Alignment
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Model image transformation as :
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Formulation of Direct Model-based 
Image Alignment
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Formulation of Direct Model-based 
Image Alignment
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Formulation of Direct Model-based 
Image Alignment

)p(I1 ′ )p(I2

p)p(up −

Model image transformation as :
))Θ;p(up(I)p(I 12 −=

Images separated 
by 

time, space, 
sensor types

Reference 
Coordinate

System

Generalized 
pixel

Displacement

Model
Parameters



Formulation of Direct Model-based 
Image Alignment

)p(I1 ′ )p(I2

p)p(up −

Compute the unknown parameters and correspondences
while aligning images using optimization : 

∑
i

iΘ
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What all can be varied ?

Filtered Image
Representations
(to account for 

Illumination changes,
Multi-modalities)
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Formulation of Direct Model-based 
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• Parametric motion models
– 2D translation, affine, projective, 3D pose [Bergen, Anandan, et.al.’92]

• Piecewise parametric motion models
– 2D parametric motion/structure layers [Wang&Adelson’93, Ayer&Sawhney’95]

• Quasi-parametric
– 3D R, T & depth per pixel. [Hanna&Okumoto’91]
– Plane+parallax [Kumar et.al.’94, Sawhney’94]

• Piecewise quasi-parametric motion models
– 2D parametric layers + parallax per layer [Baker et al.’98]

• Non-parametric
– Optic flow: 2D vector per pixel [Lucas&Kanade’81, Bergen,Anandan et.al.’92]

A Hierarchy of Models

Taxonomy by Bergen,Anandan et al.’92



Plan : This Part

• First present the generic normal equations.

• Then specialize these for a projective transformation.

• Sidebar into backward image warping.

• SSD and M-estimators.



An Iterative Solution of Model Parameters
[Black&Anandan’94 Sawhney’95]
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• Given a solution  )m(Θ at the mth iteration, find   Θδ by solving :   
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• iw is a weight associated with each measurement.  



An Iterative Solution of Model Parameters
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• In particular for Sum-of-Square Differences : 
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• We obtain the standard normal equations:  

• Other functions can be used for robust M-estimation… 



How does this work for images ? (1)

∑Θ i
ir ,

2
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ip′

• First, warp

• Given an initial guess )k(Ρ

)(1 ipI ′ towards )(2 ipI

• Let their be a 2D projective transformation between the two images:

ii pp Ρ≈′



How does this work for images ? (2)
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How does this work for images ? (3)
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Represents image 1 warped towards the reference image 2,
Using the current set of parameters



How does this work for images ? (4)

• The residual transformation between the warped image and the
reference image is modeled as:
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How does this work for images ? (5)

• The residual transformation between the warped image and the
reference image is modeled as:
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How does this work for images ? (6)
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So now we can solve for the model parameters while aligning images 
iteratively using warping and Levenberg-Marquat style optimization 



Sidebar : Backward Warping
• Note that we have used backward warping in the direct 

alignment of images.

• Backward warping avoids holes.

• Image gradients are estimated in the warped coordinate 
system.

Target Image : EmptySource Image : Filled

wpΡp =′Bilinear Warp



Sidebar : Backward Warping
• Note that we have used backward warping in the direct 

alignment of images.

• Backward warping avoids holes.

• Image gradients are estimated in the warped coordinate 
system.

Target Image : EmptySource Image : Filled

wpΡp =′Bicubic Warp



delay

estimate
global shift

warp

)(tI

)1(ˆ tI

)(td
r

)(td
r

I (t−1)

Iterative Alignment : Result



How to handle Large Transformations ?
[Burt,Adelson’81]

• A hierarchical framework for fast algorithms
• A wavelet representation for compression, 

enhancement, fusion
• A model of human vision

Gaussian

Laplacian

Pyramid
Processing



Iterative Coarse-to-fine Model-based Image Alignment
Primer

∑ +−
p

2

Θ
Θ))u(p;(pI(p)I( 21min )

{ R, T, d(p) }
{ H, e, k(p) }

{ dx(p), dy(p) }

d(p)

Warper-



• Coarse levels reduce search.

• Models of image motion 
reduce modeling complexity.

• Image warping allows model 
estimation without discrete 
feature extraction.

• Model parameters are 
estimated using iterative non-
linear optimization.

• Coarse level parameters 
guide optimization at finer 
levels.

Pyramid-based Direct Image Alignment
Primer



Application : Image/Video Mosaicing

• Direct frame-to-frame image alignment.

• Select frames to reduce the number of frames & overlap.

• Warp aligned images to a reference coordinate system.

• Create a single mosaic image.

• Assumes a parametric motion model.



Princeton Chapel Video Sequence
54 frames

Video Mosaic Example
VideoBrush’96



Unblended Chapel Mosaic



• Chips are images.

• May or may not be captured from known locations of the camera.

Image Mosaics



Output Mosaic



Handling Moving Objects in 2D 
Parametric Alignment & Mosaicing



Generalized M-Estimation

∑
i

iΘ
),σ;r(ρmin ));(()( 12 Θ−−= iiii pupIpIr

• Given a solution  )m(Θ at the mth iteration, find   Θδ by solving :   
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• iw is a weight associated with each measurement.
Can be varied to provide robustness to outliers. 
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Optimization Functions & their Corresponding Weight Plots

Geman-Mclure Sum-of-squares



With Robust Functions Direct Alignment Works 
for 

Non-dominant Moving Objects Too

Original two frames Background Alignment



Object Deletion with Layers

Video Stream with 
deleted moving objectOriginal Video



Optic Flow Estimation
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Normal Flow Constraint
At a single pixel, brightness constraint:
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Computing Optical Flow:
Discretization

• Look at some neighborhood N:
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Computing Optical Flow:
Least Squares

• In general, overconstrained linear system
• Solve by least squares
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Computing Optical Flow:
Stability

• Has a solution unless  C = ATA is 
singular
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Computing Optical Flow:
Stability

• Where have we encountered C before?
• Corner detector!
• C is singular if constant intensity or edge
• Use eigenvalues of C:

– to evaluate stability of optical flow computation
– to find good places to compute optical flow

(finding good features to track)
– [Shi-Tomasi]



Example of Flow Computation



Example of Flow Computation



Example of Flow Computation

But this in general is not the motion field



Motion Field = Optical Flow ?

From brightness constancy, normal flow:
E

E
-E

v)E(
v t
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Motion field for a Lambertian scene: 

E
)xn(I

v
T

∇
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T ωρ=+∇nIE Tρ= xnω=
dt
dn

Points with high spatial gradient are the locations
At which the motion field can be best estimated

By brightness constancy (the optical flow)



Motion Illusions 
in

Human Vision



Aperture Problem

• Too big:
confused by
multiple motions

• Too small:
only get motion
perpendicular
to edge



Ouchi Illusion

The Ouchi illusion, illustrated above, is an illusion named after its inventor, 

Japanese artist Hajime Ouchi. In this illusion, the central disk seems to float above the checkered background when

moving the eyes around while viewing the figure. Scrolling the image horizontally or vertically give a much stronger effect. 

The illusion is caused by random eye movements, which are independent in the horizontal and vertical directions. 

However, the two types of patterns in the figure nearly eliminate the effect of the eye movements parallel to each type 

of pattern. Consequently, the neurons stimulated by the disk convey the signal that the disk jitters due to the horizontal 

component of the eye movements, while the neurons stimulated by the background convey the signal that movements 

are due to the independent vertical component. Since the two regions jitter independently, the brain interprets the regions 

as corresponding to separate independent objects (Olveczky et al. 2003). 

http://mathworld.wolfram.com/OuchiIllusion.html
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Rotating Snakes




