Visual Motion Estimation

Problems \& Techniques

Princeton University COS 429 Lecture

Oct. 11, 2007

Harpreet S. Sawhney
hsawhney@sarnoff.com
$\int_{\text {Corporation }}^{\text {SAREN }}$

Outline

1. Visual motion in the Real World
2. The visual motion estimation problem
3. Problem formulation: Estimation through model-based alignment
4. Coarse-to-fine direct estimation of model parameters
5. Progressive complexity and robust model estimation
6. Multi-modal alignment
7. Direct estimation of parallax/depth/optical flow
8. Glimpses of some applications

Types of Visual Motion in the

Real World

Simple Camera Motion : Pan \& Tilt

Camera Does Not Change Location

Apparent Motion : Pan \& Tilt

Camera Moves a Lot

Independent Object Motion

Objects are the Focus Camera is more or less steady

Independent Object Motion with
 Camera Pan

Most common scenario for
capturing performances

General Camera Motion

Large changes in
camera location \& orientation

Visual Motion due to Environmental Effects

Every pixel may have its own motion

The Works!

General Camera \& Object Motions

Why is Analysis and Estimation of
Visual Motion Important?

Visual Motion Estimation as a means of extracting
 Information Content in Dynamic Imagery

...extract information behind pixel data...

Information Content in Dynamic Imagery

...extract information behind pixel data...

Extended Scene Geometry

Information Content in Dynamic Imagery

...extract information behind pixel data...

An Example

A Panning Camera

- Pin-hole camera model
- Pure rotation of the camera
- Multiple images related through a 2D projective transformation: also called a homography
- In the special case for camera pan, with small frame-to-frame rotation, and small field of view, the frames are related through a pure image translation

Pin-hole Camera Model

Camera Rotation (Pan)

Camera Rotation (Pan)

$$
y^{\prime \prime}=f \frac{Y^{\prime \prime}}{Z^{\prime \prime}} \quad p^{\prime \prime} \approx f^{\prime \prime}
$$

$$
\mathrm{p}^{\prime \prime} \approx \mathrm{R}^{\prime \prime} \mathrm{p}
$$

Image Motion due to Rotations does not depend on the
 depth / structure of the scene

Verify the same for a 3D scene and 2D camera

Pin-hole Camera Model

$$
y=f \frac{Y}{Z} \quad p \approx f P
$$

Camera Translation (Ty)

$$
\mathrm{y}^{\prime}=\mathrm{f} \frac{\mathrm{Y}^{\prime}}{\mathrm{Z}^{\prime}} \quad \mathrm{P}^{\prime} \approx \mathrm{fP}^{\prime} \quad \mathrm{P}^{\prime}=\mathrm{P}+\mathrm{T}^{\prime}
$$

Translational Displacement

$$
\begin{array}{cc}
y^{\prime}=\mathrm{f} \frac{\mathrm{Y}^{\prime}}{\mathrm{Z}^{\prime}} & \mathrm{y}^{\prime}=\mathrm{f} \frac{\mathrm{Y}^{\prime}}{\mathrm{Z}^{\prime}} \\
\mathrm{y}^{\prime}=\mathrm{f} \frac{\mathrm{Y}+\mathrm{Ty}}{\mathrm{Z}} & \mathrm{y}^{\prime}=\mathrm{f} \frac{\mathrm{Y}}{\mathrm{Z}+\mathrm{Tz}} \\
\mathrm{y}^{\prime}-\mathrm{y}=\mathrm{f} \frac{\mathrm{Ty}}{\mathrm{Z}} & y^{\prime}-\boldsymbol{y}=-\mathrm{y}^{\prime} \frac{T z}{Z}
\end{array}
$$

Image Motion due to Translation is a function of
the depth of the scene

Cannonical Optic Flow Fields

ーーーーーーーーーーセーセー＋ーナー＋＋
FTTTTTHTTTFTFFFFFFFT
ーナーナーナーナーナナナナナナナナーナ＋
$-\rightarrow-+-+--+++++++++++$
FTTTTTTTTTTTTTTーTーT

Sample Displacement Fields

Render scenes with various motions and plot the displacement fields

Motion Field vs. Optical Flow

Motion Field : 2D projections of 3D

 displacement vectors due to camera and/or object motion

Motion Field vs. Optical Flow

Lambertian ball rotating in 3D

Motion Field?

Optical Flow?

Courtesy: Michael Black @ Brown.edu Image: http://www.evl.uic.edu/aej/488/

Motion Field vs. Optical Flow

Stationary Lambertian ball with a moving point light source

Motion Field?

Optical Flow?

Courtesy : Michael Black @ Brown.edu Image : http://www.evl.uic.edu/aej/488/

A Hierarchy of Models

Taxonomy by Bergen, Anandan et al.'92

- Parametric motion models
- 2D translation, affine, projective, 3D pose [Bergen, Anandan, et.al.'92]
- Piecewise parametric motion models
- 2D parametric motion/structure layers [Wang\&Adelson'93, Ayer\&Sawhney'95]
- Quasi-parametric
- 3D R, T \& depth per pixel. [Hanna\&Okumoto'91]
- Plane+parallax [Kumar et.al.'94, Sawhney'94]
- Piecewise quasi-parametric motion models
- 2D parametric layers + parallax per layer [Baker et al.'98]
- Non-parametric
- Optic flow: 2D vector per pixel [Lucas\&Kanade'81, Bergen,Anandan et.al.'92]

Sparse/Discrete Correspondences

\&

Dense Motion Estimation

Discrete Methods

Feature Correlation
 \&
 RANSAC

Visual Motion through Discrete Correspondences

In general, discrete correspondences are related
through a transformation

Discrete Methods

Feature Correlation
 \&
 RANSAC

Discrete Correspondences

- Select corner-like points
- Match patches using Normalized Correlation
- Establish further matches using motion model

Direct Methods for Visual Motion Estimation

Employ Models of Motion and
Estimate Visual Motion through
Image Alignment

Characterizing Direct Methods

The What

- Visual interpretation/modeling involves spatiotemporal image representations directly
- Not explicitly represented discrete features like corners, edges and lines etc.
- Spatio-temporal images are represented as outputs of symmetric or oriented filters.
- The output representations are typically dense, that is every pixel is explained,
- Optical flow, depth maps.
- Model parameters are also computed.

Direct Methods: The How

Alignment of spatio-temporal images is a means of obtaining : Dense Representations, Parametric Models

Direct Method based Alignment

Formulation of Direct Model-based Image Alignment

 [Bergen, Anandan et al.'92]

Model image transformation as:

Images separated
by
time, space,
sensor types

Formulation of Direct Model-based Image Alignment

Model image transformation as :

Images separated
 by

time, space,
sensor types

Reference
Coordinate
System

Formulation of Direct Model-based Image Alignment

Model image transformation as:

Formulation of Direct Model-based Image Alignment

Model image transformation as :

Formulation of Direct Model-based Image Alignment

Model image transformation as :

Formulation of Direct Model-based Image Alignment

Compute the unknown parameters and correspondences while aligning images using optimization:

$$
\min _{\ominus} \sum_{i} \rho\left(r_{i} ; \sigma\right),
$$

Filtered Image
Representations
(to account for
Illumination changes,
Multi-modalities)
What all can be varied?

Formulation of Direct Model-based Image Alignment

Compute the unknown parameters and correspondences while aligning images using optimization:

Formulation of Direct Model-based Image Alignment

Compute the unknown parameters and correspondences while aligning images using optimization:

Formulation of Direct Model-based Image Alignment

Compute the unknown parameters and correspondences while aligning images using optimization :

Formulation of Direct Model-based Image Alignment

Compute the unknown parameters and correspondences while aligning images using optimization:

A Hierarchy of Models

Taxonomy by Bergen, Anandan et al.'92

- Parametric motion models
- 2D translation, affine, projective, 3D pose [Bergen, Anandan, et.al.'92]
- Piecewise parametric motion models
- 2D parametric motion/structure layers [Wang\&Adelson'93, Ayer\&Sawhney'95]
- Quasi-parametric
- 3D R, T \& depth per pixel. [Hanna\&Okumoto'91]
- Plane+parallax [Kumar et.al.'94, Sawhney'94]
- Piecewise quasi-parametric motion models
- 2D parametric layers + parallax per layer [Baker et al.'98]
- Non-parametric
- Optic flow: 2D vector per pixel [Lucas\&Kanade'81, Bergen,Anandan et.al.'92]

Plan : This Part

- First present the generic normal equations.
- Then specialize these for a projective transformation.
- Sidebar into backward image warping.
- SSD and M-estimators.

An Iterative Solution of Model Parameters [Black\&Anandan'94 Sawhney'95]

$\min _{\ominus} \sum_{i} \rho\left(r_{i} ; \sigma\right)$,

$$
r_{i}=I_{2}\left(p_{i}\right)-I_{1}\left(p_{i}-u\left(p_{i} ; \Theta\right)\right)
$$

- Given a solution $\boldsymbol{\Theta}^{(\mathbf{m})}$ at the m th iteration, find $\boldsymbol{\delta} \boldsymbol{\Theta}$ by solving :

- $\mathbf{W}_{\mathbf{i}}$ is a weight associated with each measurement.

An Iterative Solution of Model Parameters

$$
r_{i}=I_{2}\left(p_{i}\right)-I_{1}\left(p_{i}-u\left(p_{i} ; \Theta\right)\right)
$$

- In particular for Sum-of-Square Differences: $\quad \rho_{\text {SSD }}=\frac{r^{2}}{2 \sigma^{2}}$
- We obtain the standard normal equations:

$$
\sum_{l} \sum_{i} \frac{\partial r_{i}}{\partial \theta_{k}} \frac{\partial r_{i}}{\partial \theta_{l}} \partial \theta_{l}=-\sum_{i} r_{i} \frac{\partial r_{i}}{\partial \theta_{k}} \quad \forall \mathbf{k}
$$

- Other functions can be used for robust M-estimation...

How does this work for images? (1)

$$
\min _{\Theta} \sum_{i} \frac{1}{2} r_{i}^{2},
$$

$$
r_{i}=I_{2}\left(p_{i}\right)-I_{1}(\underbrace{p_{i}-u\left(p_{i} ; \Theta\right)}_{p_{i}^{\prime}})
$$

- Let their be a 2D projective transformation between the two images:

$$
p_{i}^{\prime} \approx P p_{i}
$$

- Given an initial guess $\mathbf{P}^{(\mathbf{k})}$
- First, warp $\boldsymbol{I}_{1}\left(\boldsymbol{p}_{\boldsymbol{i}}^{\prime}\right)$ towards $\boldsymbol{I}_{\mathbf{2}}\left(\boldsymbol{p}_{i}\right)$

How does this work for images ? (2)

$$
\mathbf{p}-\mathbf{u}(\mathrm{p})
$$

$$
\begin{aligned}
& \min _{\Theta} \sum_{i} \frac{1}{2} r_{i}^{2}, \quad r_{i}=I_{2}\left(p_{i}\right)-I_{1}(\underbrace{p_{i}-u\left(p_{i} ; \Theta\right)}_{p_{i}^{\prime}}) \\
& I_{1}^{w}\left(p^{w}\right)=I_{1}\left(p^{\prime}\right)=I_{1}\left(P^{(k)} p^{w}\right) \\
& l_{1}\left(p^{\prime}\right) \\
& \mathrm{I}_{1}^{\mathrm{w}}\left(\mathrm{p}^{\mathrm{w}}\right) \\
& \mathrm{I}_{2}(\mathrm{p})
\end{aligned}
$$

How does this work for images ? (3)

$$
\begin{gathered}
\min _{\Theta} \sum_{i} \frac{1}{2} r_{i}^{2}, \quad r_{i}=I_{2}\left(p_{i}\right)-I_{1}\left(p_{i}-u\left(p_{i} ; \Theta\right)\right. \\
I_{1}^{w}\left(p^{w}\right)=I_{1}\left(p^{\prime}\right)=I_{1}\left(P^{(k)} p^{w}\right) p_{i}^{\prime}
\end{gathered}
$$

$I_{1}^{W}\left(p^{w}\right): \quad$ Represents image 1 warped towards the reference image 2, Using the current set of parameters

$\mathrm{l}_{1}\left(\mathrm{p}^{\prime}\right)$

$\mathrm{l}_{1}^{\mathrm{w}}\left(\mathrm{p}^{\mathrm{w}}\right)$
$\mathrm{I}_{2}(\mathrm{p})$

How does this work for images ? (4)

- The residual transformation between the warped image and the reference image is modeled as:

$$
\begin{aligned}
& r_{i}=I_{2}\left(p_{i}\right)-I_{1}{ }^{w}\left(p_{i}{ }^{w}-\delta p_{i}{ }^{w}\left(p_{i}{ }^{\mathrm{w}} ; \delta \Theta\right)\right) \\
& \text { where }\left.p_{i}{ }^{w} \approx I+D\right] p_{i} \\
& D=\left[\begin{array}{ccc}
d 11 & d 12 & d 13 \\
d 21 & d 22 & d 23 \\
d 31 & d 32 & 0
\end{array}\right]
\end{aligned}
$$

How does this work for images ? (5)

- The residual transformation between the warped image and the reference image is modeled as:

$$
\begin{aligned}
r_{i} & =I_{2}\left(p_{i}\right)-I_{1}{ }^{w}\left(p_{i}{ }^{W}-\delta p_{i}{ }^{W}\left(p_{i}{ }^{w} ; D\right)\right) \\
& \approx I_{2}\left(p_{i}\right)-I^{w}\left(p_{i}{ }^{w}\left(p_{i} ; 0\right)\right)-\nabla I^{w^{\top}} \frac{\partial p_{i}^{w}}{\partial d} l_{D=0} d
\end{aligned}
$$

How does this work for images ? (6)

$$
\begin{gathered}
\min _{\Theta} \sum_{i} \frac{1}{2} r_{i}^{2}, \\
\left.r_{i} \approx \nabla I_{i}{ }^{w^{\top}} \nabla_{D} \mathbf{p}_{\mathrm{i}}^{\mathrm{w}}\right|_{\mathrm{D}=0} \mathbf{d}-\boldsymbol{\delta} \mathrm{I}\left(\mathrm{p}_{\mathrm{i}}\right) \\
\sum_{\mathrm{i}} \nabla_{\mathrm{D}}{ }^{\top} \mathbf{p}_{\mathrm{i}}{ }^{\mathrm{w}} \nabla \mathrm{I}_{\mathrm{i}}{ }^{w^{\top}} \nabla \mathrm{I}_{\mathrm{i}}{ }^{\mathrm{w}} \nabla_{\mathrm{D}} \mathbf{p}_{\mathrm{i}}{ }^{\mathrm{w}} \mathbf{d}=\sum_{\mathrm{i}} \nabla_{\mathrm{D}}{ }^{\top} \mathbf{p}_{\mathrm{i}}{ }^{\mathrm{w}} \delta \mathrm{I}\left(\mathrm{p}_{\mathrm{i}}\right) \\
\mathrm{Hd}=\mathbf{g} \\
\mathbf{P}^{(\mathrm{k}+1)} \approx \mathbf{P}^{(\mathrm{k})}[\mathbf{I}+\mathbf{D}]
\end{gathered}
$$

So now we can solve for the model parameters while aligning images iteratively using warping and Levenberg-Marquat style optimization

Sidebar : Backward Warping

- Note that we have used backward warping in the direct alignment of images.
- Backward warping avoids holes.
- Image gradients are estimated in the warped coordinate system.

Sidebar : Backward Warping

- Note that we have used backward warping in the direct alignment of images.
- Backward warping avoids holes.
- Image gradients are estimated in the warped coordinate system.

Iterative Alignment : Result

How to handle Large Transformations?

[Burt,Adelson'81]

- A hierarchical framework for fast algorithms
- A wavelet representation for compression, enhancement, fusion
- A model of human vision

Iterative Coarse-to-fine Model-based Image Alignment

Pyramid-based Direct Image Alignment

- Coarse levels reduce search.

- Image warping allows model estimation without discrete feature extraction.
- Model parameters are estimated using iterative nonlinear optimization.
- Coarse level parameters guide optimization at finer levels.

Application : Image/Video Mosaicing

- Direct frame-to-frame image alignment.
- Select frames to reduce the number of frames \& overlap.
- Warp aligned images to a reference coordinate system.
- Create a single mosaic image.
- Assumes a parametric motion model.

Video Mosaic Example

VideoBrush'96

Princeton Chapel Video Sequence 54 frames

Unblended Chapel Mosaic

Image Mosaics

- Chips are images.
- May or may not be captured from known locations of the camera.

Output Mosaic

Handling Moving Objects in 2D Parametric Alignment \& Mosaicing

Generalized M-Estimation

$$
\min _{\ominus} \sum_{i} \rho\left(r_{i} ; \sigma\right), \quad r_{i}=I_{2}\left(p_{i}\right)-I_{1}\left(p_{i}-u\left(p_{i} ; \Theta\right)\right)
$$

- Given a solution $\boldsymbol{\Theta}^{(\mathbf{m})}$ at the m th iteration, find $\boldsymbol{\delta} \boldsymbol{\Theta}$ by solving :

$$
\sum_{l} \sum_{i} \frac{\dot{\rho}\left(r_{i}\right)}{r_{i}} \frac{\partial r_{i}}{\partial \theta_{k}} \frac{\partial r_{i}}{\partial \theta_{l}} \partial \theta_{l}=-\sum_{i} \frac{\dot{\rho}_{i}\left(r_{i}\right)}{r_{i}} r_{i} \frac{\partial r_{i}}{\partial \theta_{k}} \forall k
$$

- $\mathbf{W}_{\mathbf{i}}$ is a weight associated with each measurement. Can be varied to provide robustness to outliers.
Choices of the $\boldsymbol{\rho}(\mathbf{r} ; \boldsymbol{\sigma})$ function: $\boldsymbol{\rho}_{\mathrm{SS}}=\frac{\mathbf{r}^{2}}{\mathbf{2} \boldsymbol{\sigma}^{2}} \boldsymbol{\rho}_{\mathrm{GM}}=\frac{\mathbf{r}^{2} / \boldsymbol{\sigma}^{2}}{\mathbf{1 + \mathbf { r } ^ { 2 } / \boldsymbol { \sigma } ^ { 2 }}}$

$$
\frac{\dot{\rho}_{\mathrm{Ss}}(\mathbf{r})}{\mathbf{r}}=\frac{1}{\sigma^{2}} \quad \frac{\dot{\rho}_{\mathrm{GM}}(\mathbf{r})}{\mathbf{r}}=\frac{2 \sigma^{2}}{\left(\sigma^{2}+\mathbf{r}^{2}\right)^{2}}
$$

Optimization Functions \& their Corresponding Weight Plots

With Robust Functions Direct Alignment Works for
Non-dominant Moving Objects Too

Original two frames

Background Alignment

Object Deletion with Layers

Original Video

Video Stream with deleted moving object

Optic Flow Estimation

$$
r_{i}=I_{2}\left(p_{i}\right)-l_{1}^{w}\left(p_{i}^{w}-\delta p_{i}^{w}\left(p_{i}^{w} ; D\right)\right)
$$

$$
\approx \mathcal{Z}_{2}\left(p_{i}\right)-I^{w}\left(p_{i}^{w}\left(p_{i} ; 0\right)\right)-\nabla I^{w} \delta p
$$

$$
\left[\begin{array}{ll}
l_{x}^{w} & \left.l_{y}^{w}\right] \\
\underbrace{\delta x}
\end{array} \begin{array}{l}
\delta x \\
\delta y
\end{array} \approx I_{2}\left(p_{i}\right)-I^{w}\left(p_{i}^{w}\right)=\delta l\right.
$$

Gradient Direction
Flow Vector

Normal Flow Constraint

At a single pixel, brightness constraint:

$$
\lambda
$$

Computing Optical Flow: Discretization

- Look at some neighborhood N :

$$
\begin{gathered}
\sum_{(i, j) \in \mathrm{N}}(\nabla I(i, j))^{\mathrm{T}} \mathbf{v}+I_{t}(i, j) \stackrel{\text { want }}{=} 0 \\
\mathbf{A v}+\mathbf{b}^{\text {want }}=0 \\
\mathbf{A}=\left[\begin{array}{c}
\nabla I\left(i_{1}, j_{1}\right) \\
\nabla I\left(i_{2}, j_{2}\right) \\
\vdots \\
\nabla I\left(i_{n}, j_{n}\right)
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
I_{t}\left(i_{1}, j_{1}\right) \\
I_{t}\left(i_{2}, j_{2}\right) \\
\vdots \\
I_{t}\left(i_{n}, j_{n}\right)
\end{array}\right]
\end{gathered}
$$

Computing Optical Flow: Least Squares

- In general, overconstrained linear system - Solve by least squares

$$
\begin{aligned}
\mathbf{A v}+\mathbf{b} & \stackrel{\text { want }}{=} \\
\Rightarrow\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right) \mathbf{v} & =-\mathbf{A}^{\mathrm{T}} \mathbf{b} \\
\mathbf{v} & =-\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{b}
\end{aligned}
$$

Computing Optical Flow: Stability

- Has a solution unless $\mathbf{C}=\mathbf{A}^{\top} \mathbf{A}$ is singular
$\mathbf{C}=\mathbf{A}^{\mathrm{T}} \mathbf{A}$
$\mathbf{C}=\left[\begin{array}{llll}\nabla I\left(i_{1}, j_{1}\right) & \nabla I\left(i_{2}, j_{2}\right) & \cdots & \nabla I\left(i_{n}, j_{n}\right)\end{array}\right]\left[\begin{array}{c}\nabla I\left(i_{1}, j_{1}\right) \\ \nabla I\left(i_{2}, j_{2}\right) \\ \vdots \\ \nabla I\left(i_{n}, j_{n}\right)\end{array}\right]$
$\mathbf{C}=\left[\begin{array}{ll}\sum_{N} I_{x}{ }^{2} & \sum_{N} I_{x} I_{y} \\ \sum_{N} I_{x} I_{y} & \sum_{N} I_{y}{ }^{2}\end{array}\right]$

Computing Optical Flow: Stability

- Where have we encountered \mathbf{C} before?
- Corner detector!
- C is singular if constant intensity or edge
- Use eigenvalues of C:
- to evaluate stability of optical flow computation
- to find good places to compute optical flow
(finding good features to track)
- [Shi-Tomasi]

Example of Flow Computation

Example of Flow Computation

Example of Flow Computation

But this in general is not the motion field

Motion Field = Optical Flow ?

From brightness constancy, normal flow: $v_{n}=\frac{\left(\nabla E^{\top}\right) v}{\|\nabla E\|}=-\frac{E_{t}}{\|\nabla E\|}$
Motion field for a Lambertian scene:

$$
\begin{gathered}
E=\rho I^{T} n \quad \frac{\mathrm{dn}}{\mathrm{dt}}=\omega \boldsymbol{x} n \quad \nabla E^{T} v+E_{t}=\rho I^{T}(\omega x n) \\
\therefore|\Delta v|=\rho \frac{\left|I^{T}(\omega x n)\right|}{\|\nabla E\|}
\end{gathered}
$$

Points with high spatial gradient are the locations At which the motion field can be best estimated By brightness constancy (the optical flow)

Motion Illusions in
 Human Vision

Aperture Problem

- Too big: confused by multiple motions

- Too small: only get motion perpendicular to edge

Ouchi Illusion

The Ouchi illusion, illustrated above, is an illusion named after its inventor, Japanese artist Hajime Ouchi. In this illusion, the central disk seems to float above the checkered background when moving the eyes around while viewing the figure. Scrolling the image horizontally or vertically give a much stronger effect. The illusion is caused by random eye movements, which are independent in the horizontal and vertical directions. However, the two types of patterns in the figure nearly eliminate the effect of the eye movements parallel to each type of pattern. Consequently, the neurons stimulated by the disk convey the signal that the disk jitters due to the horizontal component of the eye movements, while the neurons stimulated by the background convey the signal that movements are due to the independent vertical component. Since the two regions jitter independently, the brain interprets the regions as corresponding to separate independent objects (Olveczky et al. 2003).
http://mathworld.wolfram.com/Ouchilllusion.html

Akisha Kitakao

http://www.ritsumei.ac.jp/~akitaoka/saishin-e.html

Rotating Snakes

The

