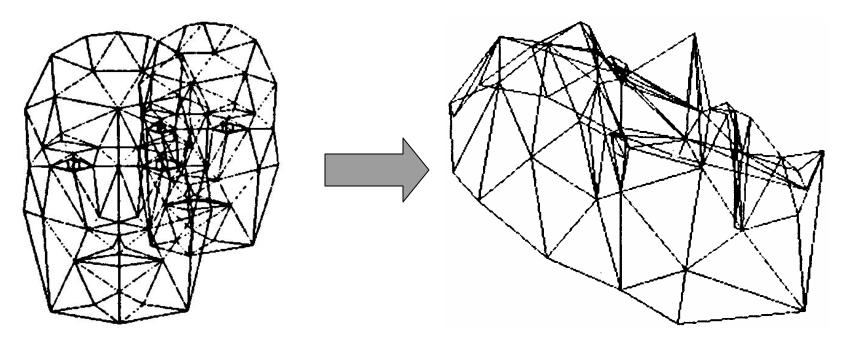
COS429: COMPUTER VISON AFFINE STRUCTURE FROM MOTION

The Structure-from-Motion Problem Affine Projection Models Affine Ambiguity of Affine SFM Affine Epipolar Geometry Affine Reconstruction from two Images Affine Reconstruction from Multiple Images

• Reading: Chapter 12

Many of the slides in this lecture are courtesy to Prof. J. Ponce

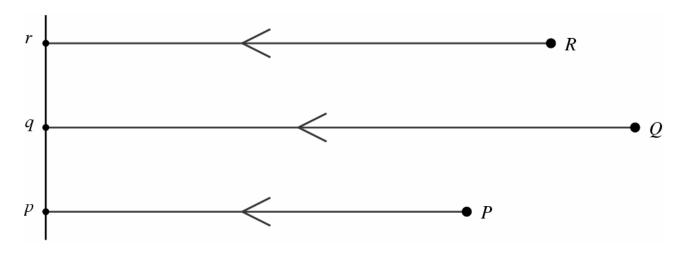
Affine Structure from Motion



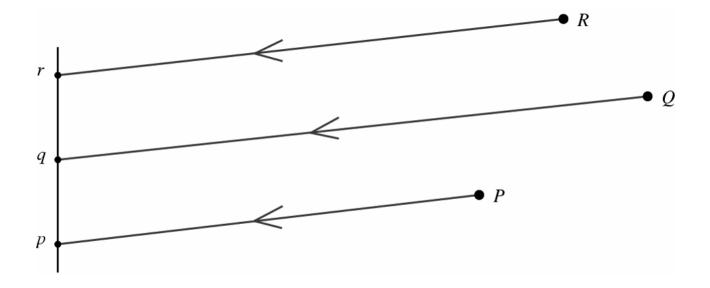
Reprinted with permission from "Affine Structure from Motion," by J.J. (Koenderink and A.J.Van Doorn, Journal of the Optical Society of America A, 8:377-385 (1990). © 1990 Optical Society of America.

Given *m* pictures of *n* points, can we recover
the three-dimensional configuration of these points? (structure)
the camera configurations? (motion)

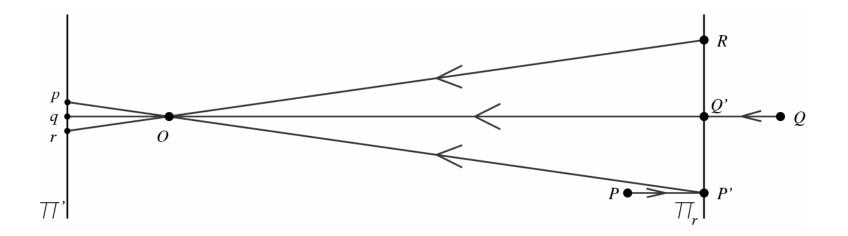
Orthographic Projection



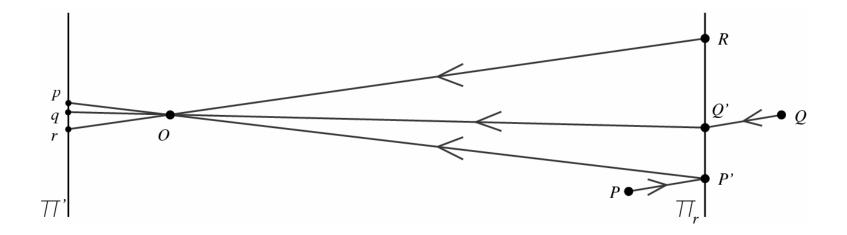
Parallel Projection



Weak-Perspective Projection



Paraperspective Projection



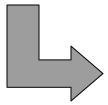
The Affine Structure-from-Motion Problem

Given *m* images of *n* fixed points P_i we can write

$$\boldsymbol{p}_{ij} = \mathcal{M}_i \begin{pmatrix} \boldsymbol{P}_j \\ 1 \end{pmatrix} = \mathcal{A}_i \boldsymbol{P}_j + \boldsymbol{b}_i \text{ for } i = 1, \dots, m \text{ and } j = 1, \dots, n.$$

Problem: estimate the *m* 2x4 matrices \mathcal{M}_i and the n positions P_i from the *mn* correspondences p_{ij} .

2mn equations in 8m+3n unknowns



Overconstrained problem, that can be solved using (non-linear) least squares!

The Affine Epipolar Constraint

$$p = \mathcal{A}P + \mathbf{b}$$

$$p' = \mathcal{A}'P + \mathbf{b}'$$

$$(\mathcal{A} \quad \mathbf{p} - \mathbf{b} \\ \mathcal{A}' \quad \mathbf{p}' - \mathbf{b}') (\mathcal{P} \\ -1) = \mathbf{0}$$

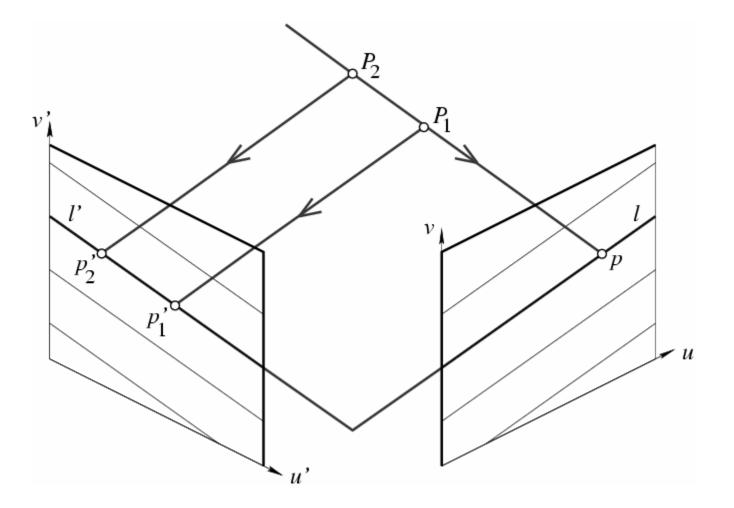
$$(\mathcal{A} \quad \mathbf{p} - \mathbf{b} \\ \mathcal{A}' \quad \mathbf{p}' - \mathbf{b}') = \mathbf{0}$$

$$(\mathcal{A} \quad \mathbf{p} - \mathbf{b} \\ \mathcal{A}' \quad \mathbf{p}' - \mathbf{b}') = \mathbf{0}$$

$$(\mathcal{A} \quad \mathbf{p} - \mathbf{b} \\ \mathcal{A}' \quad \mathbf{p}' - \mathbf{b}') = \mathbf{0}$$

$$(\mathcal{A} \quad \mathbf{p} - \mathbf{b} \\ \mathcal{A}' \quad \mathbf{p}' - \mathbf{b}') = \mathbf{0}$$

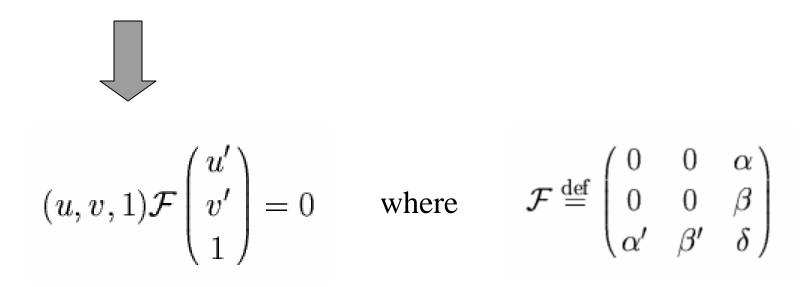
Affine Epipolar Geometry



Note: the epipolar lines are parallel.

The Affine Fundamental Matrix

$$\alpha u + \beta v + \alpha' u' + \beta' v' + \delta = 0$$



The Affine Ambiguity of Affine SFM

When the intrinsic and extrinsic parameters are unknown If M_i and P_j are solutions,

$$\boldsymbol{p}_{ij} = \mathcal{M}_i \begin{pmatrix} \boldsymbol{P}_j \\ 1 \end{pmatrix} = (\mathcal{M}_i \mathcal{Q}) \ (\mathcal{Q}^{-1} \begin{pmatrix} \boldsymbol{P}_j \\ 1 \end{pmatrix}) = \mathcal{M}'_i \begin{pmatrix} \boldsymbol{P}'_j \\ 1 \end{pmatrix}$$

So are M'_i and P'_j where $\mathcal{M}'_i = \mathcal{M}_i \mathcal{Q}$ and $\begin{pmatrix} P'_j \\ 1 \end{pmatrix} = \mathcal{Q}^{-1} \begin{pmatrix} P_j \\ 1 \end{pmatrix}$

and

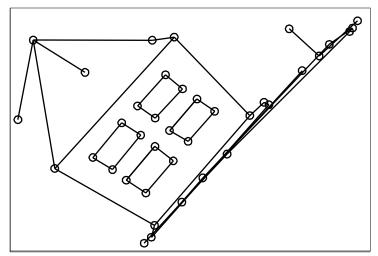
$$\mathcal{Q} = \begin{pmatrix} \mathcal{C} & \boldsymbol{d} \\ \boldsymbol{0}^T & 1 \end{pmatrix}$$
 with $\mathcal{Q}^{-1} = \begin{pmatrix} \mathcal{C}^{-1} & -\mathcal{C}^{-1}\boldsymbol{d} \\ \boldsymbol{0}^T & 1 \end{pmatrix}$

Q is an affine transformation.

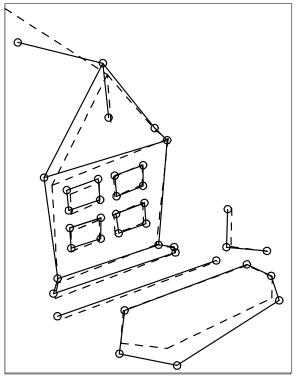
An Affine Trick..

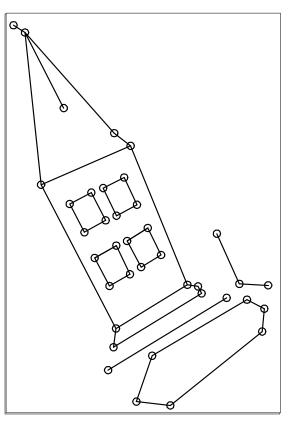
$$\mathcal{M} = (\mathcal{A} \quad \mathbf{b}) \qquad \mathcal{M}' = (\mathcal{A}' \quad \mathbf{b}') \qquad \mathbf{P}$$
$$\tilde{\mathcal{M}} = \mathcal{M}\mathcal{Q} \qquad \tilde{\mathcal{M}}' = \mathcal{M}'\mathcal{Q} \qquad \tilde{\mathbf{P}} = \mathcal{Q}^{-1}\mathbf{P}$$
$$\tilde{\mathcal{M}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \qquad \tilde{\mathcal{M}}' = \begin{pmatrix} 0 & 0 & 1 & 0 \\ a & b & c & d \end{pmatrix} \qquad \tilde{\mathbf{P}}$$
$$\boxed{\operatorname{Det} \begin{pmatrix} 1 & 0 & 0 & u \\ 0 & 1 & 0 & v \\ 0 & 0 & 1 & u' \\ a & b & c & v' - d \end{pmatrix}} = au - bv + cu' + v' - d = 0$$

An Affine Trick..



First reconstruction. Mean reprojection error: 1.6pixel





Second reconstruction. Mean reprojection error: 7.8pixel

Suppose we observe a scene with *m* fixed cameras..

$$\boldsymbol{p}_i = \mathcal{M}_i \begin{pmatrix} \boldsymbol{P} \\ 1 \end{pmatrix} = \mathcal{A}_i \boldsymbol{P} + \boldsymbol{b}_i \quad \text{for} \quad i = 1, \dots, m$$

$$egin{array}{cccc} m{P} & \longrightarrow & m{P} - m{P}_0 \ m{p} & \longrightarrow & m{p}_i = \mathcal{A}_i m{P} + m{b}_i & \longrightarrow & m{p}_i = \mathcal{A}_i m{P} \ m{p}_i = \mathcal{A}_i m{P} + m{b}_i & \longrightarrow & m{p}_i = \mathcal{A}_i m{P} \end{array}$$

$$\begin{array}{c|c} u_{11} & u_{12} & \dots & u_{1n} \\ v_{11} & v_{12} & \dots & v_{1n} \\ \dots & \dots & \dots & \dots \\ u_{m1} & u_{m2} & \dots & u_{mn} \\ v_{m1} & v_{m2} & \dots & v_{mn} \end{array} = \begin{bmatrix} A_1 \\ A_2 \\ \dots \\ A_m \end{bmatrix} \begin{array}{c} P_1 & P_2 & \dots & P_n \end{bmatrix} = \mathcal{D}$$

$$\mathcal{A}, \mathcal{P} \to \mathcal{D}$$
 Affine SFM is solved!

 $\mathcal{D}
ightarrow \mathcal{A}, \mathcal{P}$

Singular Value Decomposition

Let \mathcal{A} be an $m \times n$ matrix, with $m \geq n$, then \mathcal{A} can always be written as

$$\mathcal{A} = \mathcal{U}\mathcal{W}\mathcal{V}^T,$$

where:

- \mathcal{U} is an $m \times n$ column-orthogonal matrix, i.e., $\mathcal{U}^T \mathcal{U} = \mathrm{Id}_m$,
- \mathcal{W} is a diagonal matrix whose diagonal entries w_i (i = 1, ..., n)are the singular values of \mathcal{A} with $w_1 \ge w_2 \ge ... \ge w_n \ge 0$,
- and \mathcal{V} is an $n \times n$ orthogonal matrix, i.e., $\mathcal{V}^T \mathcal{V} = \mathcal{V} \mathcal{V}^T = \mathrm{Id}_n$.

$$\mathcal{A}, \mathcal{P} \to \mathcal{D}$$
 Affine SFM is solved!

 $\mathcal{D} \to \mathcal{A}, \mathcal{P}$

Singular Value Decomposition

Theorem: The singular values of the matrix \mathcal{A} are the eigenvalues of the matrix $\mathcal{A}^T \mathcal{A}$ and the columns of the matrix \mathcal{V} are the corresponding eigenvectors.

$$\mathcal{A}, \mathcal{P} \to \mathcal{D}$$
 Affine SFM is solved!

 $\mathcal{D} \to \mathcal{A}, \mathcal{P}$

Singular Value Decomposition

When \mathcal{A} has rank p < n, then the matrices \mathcal{U} , \mathcal{W} , and \mathcal{V} can be written as

$$\mathcal{U} = \boxed{\mathcal{U}_p \mid \mathcal{U}_{n-p}} \quad \mathcal{W} = \boxed{\begin{array}{c|c} \mathcal{W}_p \mid 0 \\ \hline 0 \mid 0 \end{array}} \quad \text{and} \quad \mathcal{V}^T = \boxed{\begin{array}{c} \mathcal{V}_p^T \\ \hline \mathcal{V}_{n-p}^T \end{array}},$$

and

- the columns of U_p form an orthonormal basis of the space spanned by the columns of A, i.e., its range,
- and the columns of \mathcal{V}_{n-p} for a basis of the space spanned by the solutions of $A\mathbf{x} = 0$, i.e., the *null space* of this matrix.

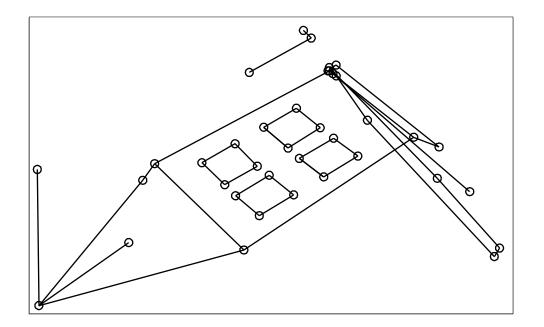
In addition, $\mathcal{A} = \mathcal{U}_p \mathcal{W}_p \mathcal{V}_p^T$.

$$\mathcal{D} \to \mathcal{A}, \mathcal{P}$$
 $E \stackrel{\text{def}}{=} \sum_{i,j} |\mathbf{p}_{ij} - \mathcal{A}_i \mathbf{P}_j|^2 = \sum_j |\mathbf{q}_j - \mathcal{A} \mathbf{P}_j|^2 = |\mathcal{D} - \mathcal{A} \mathcal{P}|^2$

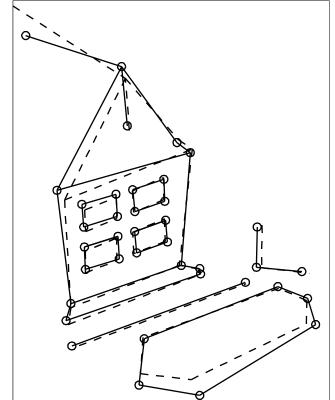
Singular Value Decomposition

Theorem: When \mathcal{A} has a rank greater than p, $\mathcal{U}_p \mathcal{W}_p \mathcal{V}_p^T$ is the best possible rank-p approximation of \mathcal{A} in the sense of the Frobenius norm.

$$\mathcal{D} = \mathcal{U}_3 \mathcal{W}_3 \mathcal{V}_3^T$$
 $\left[egin{array}{c} \mathcal{A}_0 = \mathcal{U}_3 \ \mathcal{P}_0 = \mathcal{W}_3 \mathcal{V}_3^T \end{array}
ight]$



Mean reprojection error: 2.4pixel



From uncalibrated to calibrated cameras

Weak-perspective camera:

$$\mathcal{M} = \frac{1}{z_r} \begin{pmatrix} k & s \\ 0 & 1 \end{pmatrix} (\mathcal{R}_2 \quad t_2)$$

$$\hat{\mathcal{M}} = \mathcal{M}\mathcal{Q}$$
Calibrated camera:

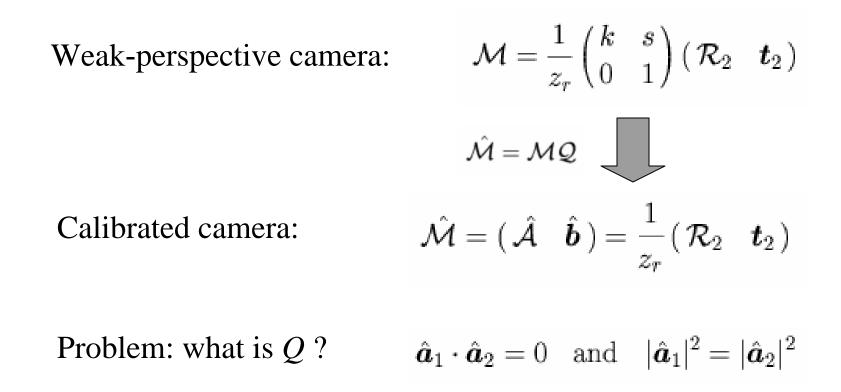
$$\hat{\mathcal{M}} = (\hat{\mathcal{A}} \quad \hat{\boldsymbol{b}}) = \frac{1}{z_r} (\mathcal{R}_2 \quad t_2)$$
Problem: what is Q ?

$$\hat{\boldsymbol{a}}_1 \cdot \hat{\boldsymbol{a}}_2 = 0 \quad \text{and} \quad |\hat{\boldsymbol{a}}_1|^2 = |\hat{\boldsymbol{a}}_2|^2$$

$$\mathcal{Q} = \begin{pmatrix} \mathcal{C} & \boldsymbol{d} \\ \boldsymbol{0}^T & 1 \end{pmatrix} \bigoplus \begin{cases} a_{i1}^T \mathcal{C}\mathcal{C}^T a_{i2} = 0, \\ a_{i1}^T \mathcal{C}\mathcal{C}^T a_{i1} = 1, \\ a_{i2}^T \mathcal{C}\mathcal{C}^T a_{i2} = 1, \end{cases} \quad \text{for} \quad i = 1, \dots, m,$$

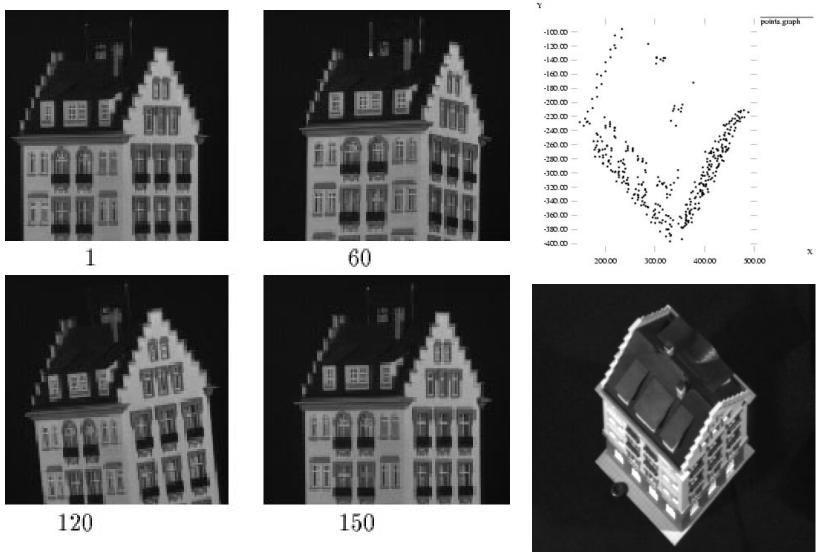
From uncalibrated to calibrated cameras

From uncalibrated to calibrated cameras

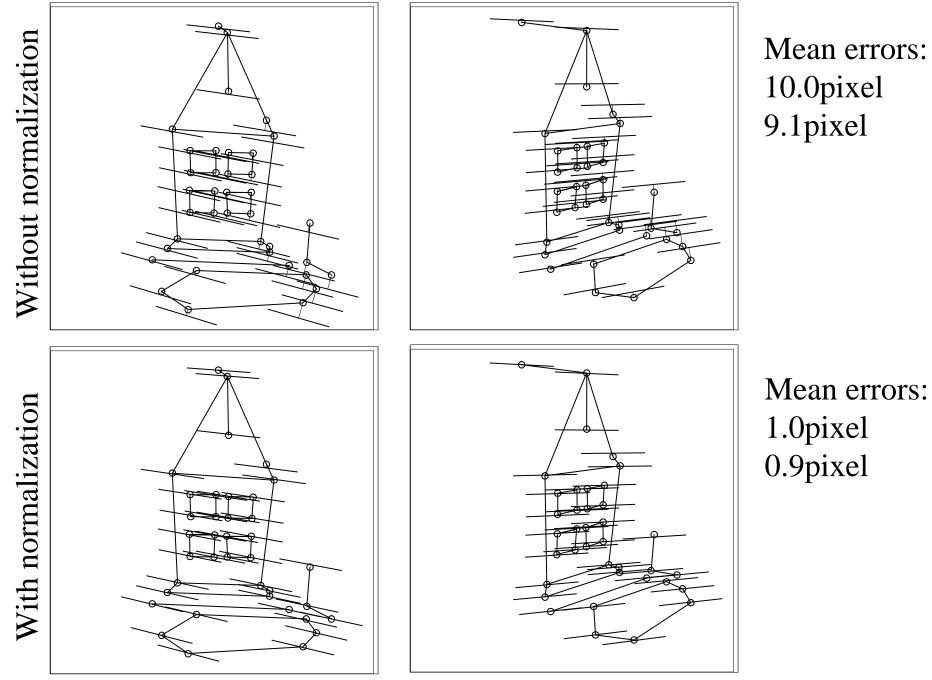


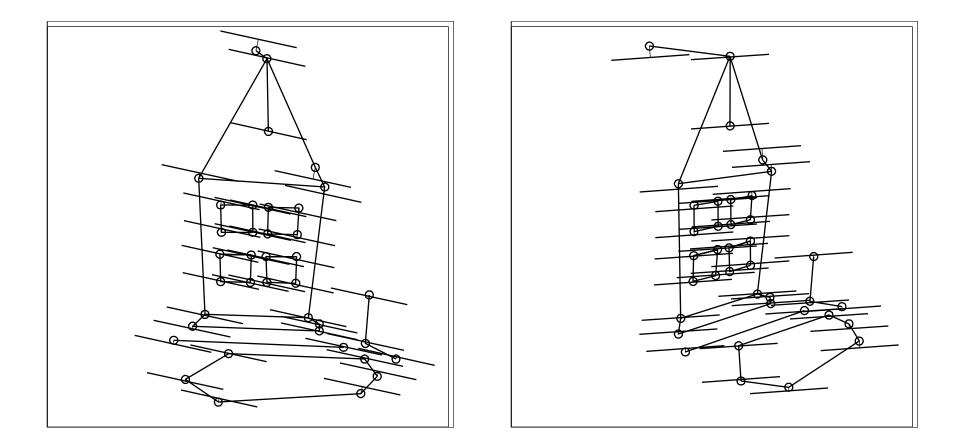
Note: Absolute scale cannot be recovered. The Euclidean shape (defined up to an arbitrary similitude) is recovered.

Reconstruction Results (Tomasi and Kanade, 1992)



Reprinted from "Factoring Image Sequences into Shape and Motion," by C. Tomasi and T. Kanade, Proc. IEEE Workshop on Visual Motion (1991). © 1991 IEEE.





Mean errors: 3.24 and 3.15 pixels