Reductions

designing algorithms
 establishing lower bounds
 establishing intractability
 classifying problems

Bird's-eye view

Desiderata. Classify problems according to computational requirements.

- Linear: min/max, median, Burrows-Wheeler transform, ...
- Linearithmic: sort, convex hull, Voronoi, ...
- Quadratic:
- Cubic:
- ...
- Exponential:

Frustrating news.

Huge number of fundamental problems have defied classification.

Bird's-eye view

Desiderata. Classify problems according to computational requirements.

Desiderata'.

Suppose we could (couldn't) solve problem X efficiently. What else could (couldn't) we solve efficiently?

Give me a lever long enough and a fulcrum on which to place it, and I shall move the world. -Archimedes

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that solves Y to help solve X.

Cost of solving X = total cost of solving Y + cost of reduction.

perhaps many calls to Y on problems of different sizes

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that solves Y to help solve X.

Ex 1. [element distinctness reduces to sorting]

To solve element distinctness on N integers:

- sort N integers
- scan through consecutive pairs and check if any are equal

Cost of solving element distinctness: N log N + N.

Def. Problem X reduces to problem Y if you can use an algorithm that solves Y to help solve X.

Ex 2. [3-collinear reduces to sorting]

To solve 3-collinear instance on N points in the plane:

• for each point, sort other points by polar angle scan through consecutive triples and check if they are collinear

Cost of solving 3-collinear: $N^2 \log N + N^2$.

Designing algorithms

Def. Problem X reduces to problem Y if you can use an algorithm that solves Y to help solve X.

Design algorithm: given algorithm for Y, can also solve X.

Ex.

- · element distinctness reduces to sorting
- 3-collinear reduces to sorting
- Euclidean MST reduces to to Voronoi [see geometry lecture]
- PERT reduces to topological sort [see digraph lecture]

Mentality: Since I know how to solve Y, can I use that algorithm to solve X?

programmer's version: I have code for Y. Can I use it for X?

designing algorithms

establishing lower bounds
 establishing intractability
 classifying problems

Convex hull reduces to sorting

Sorting. Given N distinct integers, rearrange them in ascending order.

Convex hull. Given N points in the plane, identify the extreme points of the convex hull (in counter-clockwise order).

Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to directed shortest path.

Pf. Replace each undirected edge by two directed edges.

Primality testing					Caveat
	eger x (represented in bi an integer x, does x have	• • •			PRIME. Given an integ COMPOSITE. Given ar
Proposition. COMPO	SITE reduces to PRIME.				Proposition. COMPOS Proposition. PRIME re
	boolean isComposite(BigIn (x)) return false; return true;	teger x)			A possible real-world • System designer s • Programmer A impl • Programmer B impl • Infinite reduction
	PRIME	1475739	52589676412931		
	$\downarrow \uparrow$		prime		
	COMPOSITE	1475739	52589676412927		
			composite	13	

Linear-time reductions

- Def. Problem X linear-time reduces to problem Y if X can be solved with:
- linear number of standard computational steps

• one call to Y

- Ex. Almost all of the reductions we've seen so far.
- Q. Which one was not a linear-time reduction?

Linear-time reductions

Def. Problem X linear-time reduces to problem Y if X can be solved with:

20

- linear number of standard computational steps
- one call to ${\ensuremath{\mathsf{Y}}}$

Establish lower bound:

- if X takes Ω(N log N) steps, then so does Y
- if X takes $\Omega(N^2)$ steps, then so does Y

Mentality:

- if I could easily solve Y, then I could easily solve X
- I can't easily solve X
- therefore, I can't easily solve Y

Pf.

• Region $\{x : x^2 \ge x\}$ is convex \Rightarrow all points are on hull.

 (x_2, x_2^2)

• Starting at point with most negative x, counter-clockwise order of hull points yields integers in ascending order.

24

establishing intractability
classifying problems
25

Bird's eye view

Desiderata. Prove that a problem can't be solved in poly-time.

Frustrating news. Extremely difficult and few successes.

3-satisfiability Literal: A Boolean variable or its negation. xi or ¬xi Clause. An or of 3 distinct literals. $C_j = (\mathbf{x}_1 \vee \neg \mathbf{x}_2 \vee \mathbf{x}_3)$ $\Phi = (C_1 \wedge C_2 \wedge C_3 \wedge C_4)$ Conjunctive normal form. An and of clauses. 3-SAT. Given a CNF formula Φ consisting of k clauses over n literals, does it have a satisfying truth assignment? yes instance $(\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_2 \lor x_3 \lor x_4)$ no instance $(\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_4) \land (\neg x_2 \lor x_3 \lor x_4)$ Applications. Circuit design, program correctness, [many others] 31

Graph 3-colorability

3-satisfiability reduces to graph 3-colorability

Proposition. 3-SAT poly-time reduces to 3-COLOR.

Pf. Given 3-SAT instance Φ , we construct an instance G of 3-COLOR that is 3-colorable if and only if Φ is satisfiable.

Construction.

(i) Create one vertex for each literal and 3 vertices 🕞 🔳 🚯

(ii) Connect (B) (1) (B) in a triangle and connect each literal to (B)
 (iii) Connect each literal to its negation.

(iv) For each clause, attach a 6-vertex gadget [details to follow].

3-satisfiability reduces to graph 3-colorability Claim. If graph G is 3-colorable then Φ is satisfiable. Pf. Consider assignment where c corresponds to false and to true. (ii) [triangle] ensures each literal is true or false. (iii) ensures a literal and its negation are opposites.

3-satisfiability reduces to graph 3-colorability

Claim. If graph G is 3-colorable then Φ is satisfiable. Pf.

- Consider assignment where 🕞 corresponds to false and 🗊 to true.
- (ii) [triangle] ensures each literal is true or false.
- (iii) ensures a literal and its negation are opposites.
- (iv) [gadget] ensures at least one literal in each clause is true.

Therefore, Φ is satisfiable.

Dick Karp '85 Turing award

HAM-PATH

48

HAM-CYCLE

TSP

3-satisfiability reduces to graph 3-colorability

Proposition. 3-SAT poly-time reduces to 3-COLOR.

Pf. Given 3-SAT instance Φ , we construct an instance G of 3-COLOR that is 3-colorable if and only if Φ is satisfiable.

Construction.

(i) Create one vertex for each literal and 3 vertices 🕞 🕦 🚯 (ii) Connect 🕞 🕦 🚯 in a triangle and connect each literal to 🚯

- (iii) Connect each literal to its negation.
- (iv) For each clause, attach a 6-vertex gadget.

3-satisfiability is intractable

Want to be convinced that a new problem is intractable?

Hard way: long futile search for an efficient algorithm (as for 3-SAT) Easy way: reduction from a known intractable problem (such as 3-SAT)

hence, intricate reductions are common

Classify problems

Desiderata. Classify problems according to difficulty.

- linear: can be solved in linear time
- linearithmic: can be solved in linearithmic time
- quadratic: can be solved in quadratic time
- ...
- tractable: can be solved in poly-time
- intractable: seem to require exponential time
- Ex. Sorting and convex hull are in same complexity class.
- sorting linear-time reduces to convex hull
 convex hull linear-time reduces to sorting
- linearithmic

54

Classify problems

Desiderata. Classify problems according to difficulty.

- linear: can be solved in linear time
- linearithmic: can be solved in linearithmic time
- quadratic: can be solved in quadratic time
- ...
- tractable: can be solved in poly-time
- intractable: seem to require exponential time
- Ex. PRIME and COMPOSITE are in same complexity class.
- PRIME linear-time reduces to COMPOSITE
- COMPOSITE linear-time reduces to PRIME

tractable, but nobody knows which class 53

Summary

Reductions are important in theory to:

- Establish tractability.
- Establish intractability.
- Classify problems according to their computational requirements.

Reductions are important in practice to:

- Design algorithms.
- Design reusable software modules. stack, queue, sorting, priority queue, symbol table, set, graph, shortest path, max flow, Voronoi, regular expression, linear programming
- Determine difficulty of your problem and choose the right tool. use exact algorithm for tractable problems use heuristics for intractable problems