Reductions

```
designing algorithms
> establishing lower bounds
> establishing intractability
- classifying problems
```


Bird's-eye view

Desiderata. Classify problems according to computational requirements.

Desiderata'.
Suppose we could (couldn' \dagger) solve problem X efficiently.
What else could (couldn' \dagger) we solve efficiently?

Give me a lever long enough and a fulcrum on which to place it, and I shall move the world.-Archimedes

Bird's-eye view

Desiderata. Classify problems according to computational requirements.

- Linear: $\min / m a x$, median, Burrows-Wheeler transform, ..
- Linearithmic: sort, convex hull, Voronoi, ...
- Quadratic:
- Cubic:
- ...

Frustrating news.
Huge number of fundamental problems have defied classification.

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that solves Y to help solve X.

Cost of solving $X=$ total cost of solving $Y+$ cost of reduction.

$$
\uparrow \begin{aligned}
& \uparrow \\
& \begin{array}{l}
\text { perhaps many calls to } y \\
\text { on problems of different sizes }
\end{array}
\end{aligned}
$$

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that solves Y to help solve X.

Ex 1. [element distinctness reduces to sorting]
To solve element distinctness on N integers:

- sort N integers
- scan through consecutive pairs and check if any are equal

Cost of solving element distinctness: $N \log N+N$.

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that solves Y to help solve X.

Ex 2. [3-collinear reduces to sorting]
To solve 3-collinear instance on N points in the plane:

- for each point, sort other points by polar angle scan through consecutive triples and check if they are collinear

Cost of solving 3-collinear: $N^{2} \log N+N^{2}$.

Mentality: Since I know how to solve Y, can I use that algorithm to solve X ?

$$
\text { programmer's version: I have code for } \mathrm{Y} \text {. Can I use it for } \mathrm{X} \text { ? }
$$

Designing algorithms

Def. Problem X reduces to problem Y if you can use an algorithm that solves Y to help solve X.

Design algorithm: given algorithm for Y, can also solve X.

Ex.

- element distinctness reduces to sorting
- 3-collinear reduces to sorting
- Euclidean MST reduces to to Voronoi [see geometry lecture]
- PERT reduces to topological sort [see digraph lecture]

designing algorithms

Cestankining lower oounas
 classifying problems

Convex hull reduces to sorting

Sorting. Given N distinct integers, rearrange them in ascending order.
Convex hull. Given N points in the plane, identify the extreme points of the convex hull (in counter-clockwise order).

Proposition. Convex hull reduces to sorting
Pf. Graham scan algorithm.

Shortest path with negative weights
Caveat. Reduction is invalid in networks with negative weights (even if no negative cycles).

Remark. Can still solve shortest path problem in undirected graphs (if no negative cycles), but need more sophisticated techniques.

[^0]
Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to directed shortest path.

Pf. Replace each undirected edge by two directed edges.

Primality testing

PRIME. Given an integer \times (represented in binary), is \times prime? COMPOSITE. Given an integer x, does x have a nontrivial factor?

Proposition. PRIME reduces to COMPOSITE.

```
public static boolean isPrime(BigInteger x)
    if (isComposite(x)) return false;
    else
        eturn true;
}
```

147573952589676412931

147573952589676412927

Primality testing

PRIME. Given an integer x (represented in binary), is x prime? COMPOSITE. Given an integer x, does x have a nontrivial factor?

Proposition. COMPOSITE reduces to PRIME.

```
public static boolean isComposite(BigInteger x
    if (isPrime(x)) return false
}
```

PRIME	147573952589676412931
prime	
COMPOSITE	147573952589676412927

composite

Bipartite matching reduces to LP	
Proposition. Bipartite matching reduces to LP.	
maximize subject to the constraints	$\left.\begin{array}{c} x_{A 0}+x_{A 1}+x_{A 2}+x_{B 0}+x_{B 1}+x_{B 5} \\ +x_{C 2}+x_{C 3}+x_{C 4}+x_{D O}+x_{D 1} \\ +x_{E 3}+x_{E 4}+x_{E 5}+x_{F 2}+x_{F 4}+x_{F 5} \\ x_{A 0}+x_{A 1}+x_{A 2}=1 \\ x_{B 0}+x_{B 1}+x_{B 5}=1 \\ x_{C 2}+x_{C 3}+x_{C 4}=1 \\ x_{D O}+x_{D 1}=1 \\ x_{E 3}+x_{E 4}+x_{E 5}=1 \\ x_{F 2}+x_{F 4}+x_{F 5}=1 \end{array}\right\} C$ constraints on top vertices
interpretation: An edge is in the matching iff $x_{i j}=1$	$\left.\begin{array}{c} x_{A 0}+x_{B 0}+x_{D 0}=1 \\ x_{A 1}+x_{B 1}+x_{D 1}=1 \\ x_{A 2}+x_{C 2}+x_{F 2}=1 \\ x_{C 3}+x_{E 3}=1 \\ x_{C 4}+x_{E 4}+x_{F 4}=1 \\ x_{B 5}+x_{E 5}+x_{F 5}=1 \\ \text { all } x_{i j} \geq 0 \end{array}\right\} \text { constraints on } \text { bottom vertices }$

PRIME. Given an integer x (represented in binary), is \times prime? COMPOSITE. Given an integer x, does x have a nontrivial factor?

Proposition. COMPOSITE reduces to PRIME.
Proposition. PRIME reduces to COMPOSITE.
A possible real-world scenario:

- System designer specs the APIs for project.
- Programmer A implements isComposite () using isPrime().
- Programmer B implements isPrime() using isComposite().
- Infinite reduction loop! whose faul?

Linear-time reductions

Def. Problem X linear-time reduces to problem Y if X can be solved with:

- linear number of standard computational steps
- one call to Y

Ex. Almost all of the reductions we've seen so far.
Q. Which one was not a linear-time reduction?

Bird's eye view

Goal. Prove that a problem requires a certain number of steps.
Ex. $\Omega(N \log N)$ lower bound for sorting

2861534
3988818
4190745
3546464
$9885444 \quad$ argument must apply to anl conceivable algorithms
\downarrow
Bad news. Very difficult to establish lower bounds from scratch.

Good news. Can establish $\Omega(N \log N)$ lower bound for Y by reducing sorting to Y.
assuming cost of reduction is not too large

Linear-time reductions

Def. Problem X linear-time reduces to problem Y if X can be solved with:

- linear number of standard computational steps
- one call to Y

Establish lower bound

- if X takes $\Omega(N \log N)$ steps, then so does Y
- if X takes $\Omega\left(N^{2}\right)$ steps, then so does Y

Mentality:

- if I could easily solve Y, then I could easily solve X
- I can't easily solve X
- therefore, I can't easily solve Y

Lower bound for convex-hul

Fact. In quadratic decision tree model, any algorithm for sorting N integers requires $\Omega(N \log N)$ steps.

> allows quadratic tests of the form: $x_{i}<x_{j}$ or $\left(x_{j}-x_{i}\right)\left(x_{k}-x_{i}\right)-\left(x_{j}\right)\left(x_{j}-x_{i}\right)<0$

Proposition. Sorting linear-time reduces to convex hull. Pf. [see next slide]

a quadratic test

Sorting linear-reduces to convex hull

Proposition. Sorting linear-time reduces to convex hull.

- Sorting instance. $\quad X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$
- Convex hull instance. $P=\left\{\left(x_{1}, x_{1}{ }^{2}\right),\left(x_{2}, x_{2}{ }^{2}\right), \ldots,\left(x_{N}, x_{N}{ }^{2}\right)\right\}$

Pf.

- Region $\left\{x: x^{2} \geq x\right\}$ is convex \Rightarrow all points are on hull.
- Starting at point with most negative x, counter-clockwise order of hull points yields integers in ascending order.

Lower bound for 3-COLLINEAR

3-SUM. Given N distinct integers, are there three that sum to 0 ?

3-COLLINEAR. Given N distinct points in the plane,
are there 3 that all lie on the same line?

23142121	
-34233561	- -
31988818	-
-4190745	- .
54523423	
-20289862	
3-SUM	3-COLLINEAR

Lower bound for 3-COLLINEAR

3-SUM. Given N distinct integers, are there three that sum to 0 ?

3-COLLINEAR. Given N distinct points in the plane,
are there 3 that all lie on the same line?

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.
Pf. [see next 2 slide]
in a restricted model of computation
\square
Fact. Any algorithm for 3 -SUM requires $\Omega\left(N^{2}\right)$ time
Implication. No sub-quadratic algorithm for 3-COLLINEAR
\square
your $N^{2} \log N$ algorithm was pretty good

3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

- 3-SUM instance: $\quad X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$
- 3-COLLINEAR instance: $P=\left\{\left(x_{1}, x_{1}{ }^{3}\right),\left(x_{2}, x_{2}{ }^{3}\right), \ldots,\left(x_{N}, x_{N}{ }^{3}\right)\right\}$

3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

- 3-SUM instance: $\quad X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$
- 3-COLLINEAR instance: $P=\left\{\left(x_{1}, x_{1}^{3}\right),\left(x_{2}, x_{2}{ }^{3}\right), \ldots,\left(x_{N}, x_{N}{ }^{3}\right)\right\}$

Lemma. If a, b, and c are distinct, then $a+b+c=0$
if and only if $\left(a, a^{3}\right),\left(b, b^{3}\right),\left(c, c^{3}\right)$ are collinear.

Pf. Three points $\left(a, a^{3}\right),\left(b, b^{3}\right),\left(c, c^{3}\right)$ are collinear iff:

$$
\begin{aligned}
\left(a^{3}-b^{3}\right) /(a-b) & =\left(b^{3}-c^{3}\right) /(b-c) & & \text { slopes are equal } \\
(a-b)\left(a^{2}+a b+b^{2}\right) /(a-b) & =(b-c)\left(b^{2}+b c+c^{2}\right) /(b-c) & & \text { factor numerators } \\
\left(a^{2}+a b+b^{2}\right) & =\left(b^{2}+b c+c^{2}\right) & & a-b \text { and } b-c \text { are nonzero } \\
a^{2}+a b-b c-c^{2} & =0 & & \text { collect terms } \\
(a-c)(a+b+c) & =0 & & \text { factor } \\
a+b+c & =0 & & a-c \text { is nonzero }
\end{aligned}
$$

Establishing lower bounds: summary

Establishing lower bounds through reduction is an important tool in guiding algorithm design efforts

Want to be convinced that no linear-time convex hull alg exists? Hard way: long futile search for a linear-time algorithm
Easy way: reduction from sorting

3-COLLINEAR

Want to be convinced that no subquadratic 3-COLLINEAR alg exists? Hard way: long futile search for a subquadratic algorithm
Easy way: reduction from 3-SUM

3-satisfiability			
Literal: A Boolean variable or its negation. x_{i} or $\neg x_{i}$			
Clause. An or of 3 distinct literals. $\quad C_{j}=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right)$			
Conjunctive normal form. An and of clauses. $\quad \Phi=\left(C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}\right)$			
3-SAT. Given a CNF formula Φ consisting of k clauses over n literals, does it have a satisfying truth assignment?			
yes instance			
$\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3} \vee x_{4}\right)$			
x_{1} x_{2} x_{3} x_{4} T T F T			
no instance			
$\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3} \vee x_{4}\right)$			
Applications. Circuit design, program correctness, [many others]			

Bird's eye view

Desiderata. Prove that a problem can't be solved in poly-time.

Frustrating news. Extremely difficult and few successes.

3-satisfiability is intractable

Q. How to solve an instance of 3-SAT with n variables?
A. Exhaustive search: try all 2^{n} truth assignments.
Q. Can we do anything substantially more clever?

Conjecture ($P \neq \mathrm{NP}$). No poly-time algorithm for 3-SAT.
Good news. Can prove problems "intractable" via reduction from 3-SAT.

Polynomial-time reductions

Def. Problem X poly-time reduces to problem Y if X can be solved with:

- polynomial number of standard computational steps
- one call to Y

Ex. All reductions we've seen.

Polynomial-time reductions

Def. Problem X poly-time reduces to problem Y if X can be solved with:

- polynomial number of standard computational steps
- one call to Y

Establish intractability. If 3-SAT poly-time reduces to Y, then Y is intractable.

Mentality:

- if I could solve Y in poly-time, then I could also solve 3-SAT
- I can't solve 3-SAT
- therefore, I can't easily solve Y

Graph 3-colorability

3-COLOR. Given a graph, is there a way to color the vertices red, green, and blue so that no adjacent vertices have the same color?

Graph 3-colorability

3-COLOR. Given a graph, is there a way to color the vertices red, green, and blue so that no adjacent vertices have the same color?

no instance

Proposition. 3-SAT poly-time reduces to 3-COLOR.
Pf. Given 3-SAT instance Φ, we construct an instance G of 3 -COLOR that is 3 -colorable if and only if Φ is satisfiable.

Construction.
(i) Create one vertex for each literal and 3 vertices \qquad
(ii) Connect F T B in a triangle and connect each literal to B
(iii) Connect each literal to its negation.
(iv) For each clause, attach a 6-vertex gadget [details to follow].

3-satisfiability reduces to graph 3-colorability
Claim. If graph G is 3 -colorable then Φ is satisfiable.
Pf.

- Consider assignment where F corresponds to false and T to true.
- (ii) [triangle] ensures each literal is true or false.
- (iii) ensures a literal and its negation are opposites.

3-satisfiability reduces to graph 3-colorability
Claim. If graph G is 3 -colorable then Φ is satisfiable.
Pf.

- Consider assignment where
 corresponds to false and T to true
- (ii) [triangle] ensures each literal is true or false.
- (iii) ensures a literal and its negation are opposites.
- (iv) [gadget] ensures at least one literal in each clause is true.

$$
\underset{\text { next slide }}{\uparrow}
$$

Claim. If graph G is 3 -colorable then Φ is satisfiable.
Pf.

- Consider assignment where F corresponds to false and T to true.
- (ii) [triangle] ensures each literal is true or false.
- (iii) ensures a literal and its negation are opposites.
- (iv) [gadget] ensures at least one literal in each clause is true.

Therefore, Φ is satisfiable.

3-satisfiability reduces to graph 3-colorability
Claim. If Φ is satisfiable then graph G is 3 -colorable.
Pf.

- Color nodes corresponding to false literals and to true literals .
- Color vertex below one vertex and vertex below that

3-satisfiability reduces to graph 3-colorability

Claim. If Φ is satisfiable then graph G is 3 -colorable.
Pf.

- Color nodes corresponding to false literals and to true literals
- Color vertex below one vertex and vertex below that
- Color remaining middle row vertices

3-satisfiability reduces to graph 3-colorability
Proposition. 3-SAT poly-time reduces to 3-COLOR.
Pf. Given 3-SAT instance Φ, we construct an instance G of 3 -COLOR that is 3 -colorable if and only if Φ is satisfiable.

Construction.
(i) Create one vertex for each literal and 3 vertices F (B
(ii) Connect F T B in a triangle and connect each literal to B
(iii) Connect each literal to its negation.
(iv) For each clause, attach a 6-vertex gadget.

Consequence. 3 -COLOR is intractable.

3-satisfiability reduces to graph 3-colorability

Claim. If Φ is satisfiable then graph G is 3 -colorable.
Pf.

- Color nodes corresponding to false literals and to true literals
- Color vertex below one vertex and vertex below that
- Color remaining middle row vertices
- Color remaining bottom vertices or as forced.

Works for all gadgets, so graph is 3-colorable. :

3-satisfiability is intractable

Want to be convinced that a new problem is intractable?
Hard way: long futile search for an efficient algorithm (as for 3-SAT)
Easy way: reduction from a known intractable problem (such as 3-SAT)
hence, intricate reductions are common

"I can't find an efficient algorithm, because no such algorithm is possible!"

"I can't find an efficient algorithm, I guess I'm just too dumb."

Implications of poly-time reductions
Implications of poly-time reductions

Classify problems

Desiderata. Classify problems according to difficulty.

- linear: can be solved in linear time
- linearithmic: can be solved in linearithmic time
- quadratic: can be solved in quadratic time
- ...
- tractable: can be solved in poly-time
- intractable: seem to require exponential time

Ex. PRIME and COMPOSITE are in same complexity class.

- PRIME linear-time reduces to COMPOSITE
- COMPOSITE linear-time reduces to PRIME
tractable, but nobody knows which class

Classify problems

Desiderata. Classify problems according to difficulty.

- linear: can be solved in linear time
- linearithmic: can be solved in linearithmic time
- quadratic: can be solved in quadratic time
- ...
- tractable: can be solved in poly-time
- intractable: seem to require exponential time

Ex. Sorting and convex hull are in same complexity class.

- sorting linear-time reduces to convex hull
- convex hull linear-time reduces to sorting
linearithmic

Classify problems

Desiderata. Classify problems according to difficulty.

- linear: can be solved in linear time
- linearithmic: can be solved in linearithmic time
- quadratic: can be solved in quadratic time
- ...
- tractable: can be solved in poly-time
- intractable: seem to require exponential time

Ex. 3-SAT and 3-COLOR are in same complexity class.

- 3-SAT poly-time reduces to 3-COLOR
- 3-COLOR poly-time reduces to 3-SAT

[^1]
Cook's Theorem

P. Set of problems solvable in poly-time.

Importance. What scientists and engineers can compute feasibly.
NP. Set of problems checkable in poly-time.
Importance. What scientists and engineers aspire to compute feasibly.

Cook's Theorem. Any problem in NP poly-time reduces to 3-SAT.
"NP-complete"

58

Summary

Reductions are important in theory to:

- Establish tractability.
- Establish intractability.
- Classify problems according to their computational requirements

Reductions are important in practice to

- Design algorithms
- Design reusable software modules
stack, queue, sorting, priority queue, symbol table, set,
graph, shortest path, max flow, Voronoi,
regular expression, linear programming
- Determine difficulty of your problem and choose the right tool. use exact algorithm for tractable problems use heuristics for intractable problems

[^0]: reduces to weighted non-bipartite matching ()

[^1]: Cook's theorem
 (stay tuned)

