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Geometric Algorithms

!range search

!quad and kd trees

! intersection search

!VLSI rules check

References:

    Algorithms in C (2nd edition), Chapters 26-27
   http://www.cs.princeton.edu/introalgsds/73range   

   http://www.cs.princeton.edu/introalgsds/74intersection
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Overview

Types of data.  Points, lines, planes, polygons, circles, ...

This lecture.  Sets of N objects.

Geometric problems extend to higher dimensions.

• Good algorithms also extend to higher dimensions.

• Curse of dimensionality.

Basic problems.

• Range searching.

• Nearest neighbor.

• Finding intersections of geometric objects.
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! intersection search
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1D Range Search

Extension to symbol-table ADT with comparable keys.

• Insert key-value pair.

• Search for key k.

• How many records have keys between k1 and k2?

• Iterate over all records with keys between k1 and k2.

Application:  database queries.

Geometric intuition.

• Keys are point on a line.

• How many points in a given interval?

insert B B

insert D B D

insert A A B D

insert I A B D I

insert H A B D H I

insert F A B D F H I

insert P A B D F H I P

count G to K 2

search G to K H I
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1D Range search: implementations

Range search.  How many records have keys between k1 and k2?

Ordered array.  Slow insert, binary search for k1 and k2 to find range.

Hash table.  No reasonable algorithm (key order lost in hash).

BST.   In each node x, maintain number of nodes in tree rooted at x. 

Search for smallest element !  k1 and largest element "  k2. 

log N

N

log N

countinsert range

ordered array N R + log N

hash table 1 N

BST log N R + log N

nodes examined

within interval

not touched

N = # records
R = # records that match
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2D Orthogonal Range Search

Extension to symbol-table ADT with 2D keys.

• Insert a 2D key.

• Search for a 2D key.

• Range search:  find all keys that lie in a 2D range?

• Range count:  how many keys lie in a 2D range?

Applications:  networking, circuit design, databases.

Geometric interpretation.

• Keys are point in the plane

• Find all points in a given h-v rectangle
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2D Orthogonal range Search:  Grid implementation

Grid implementation.  [Sedgewick 3.18]

• Divide space into M-by-M grid of squares.

• Create linked list for each square.

• Use 2D array to directly access relevant square. 

• Insert:  insert (x, y) into corresponding grid square.

• Range search:  examine only those grid squares that could have 

points in the rectangle.

LB

RT
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2D Orthogonal Range Search:  Grid Implementation Costs

Space-time tradeoff.

• Space:  M2 + N.

• Time:   1 + N / M2 per grid cell examined on average.

Choose grid square size to tune performance.

• Too small:  wastes space.

• Too large:  too many points per grid square.

• Rule of thumb:  !N by !N grid.

Running time.  [if points are evenly distributed]

• Initialize:  O(N).

• Insert:  O(1).

• Range:  O(1) per point in range.

LB

RTM " !N 
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Clustering

Grid implementation.  Fast, simple solution for well-distributed points.

Problem.  Clustering is a well-known phenomenon in geometric data.

Ex:  USA map data.

    13,000 points, 1000 grid squares.

Lists are too long, even though average length is short.

Need data structure that gracefully adapts to data.

half the squares are empty half the points are
in 10% of the squares
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Space Partitioning Trees

Use a tree to represent a recursive subdivision of d-dimensional space.

BSP tree.  Recursively divide space into two regions.

Quadtree. Recursively divide plane into four quadrants.

Octree.  Recursively divide 3D space into eight octants.

kD tree.  Recursively divide k-dimensional space into two half-spaces.
   [possible but much more complicated to define Voronoi-based structures]

Applications.

• Ray tracing.

• Flight simulators.

• N-body simulation.

• Collision detection. 

• Astronomical databases. 

• Adaptive mesh generation.

• Accelerate rendering in Doom.

• Hidden surface removal and shadow casting. 

Grid

Quadtree

kD tree

BSP tree
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Quadtree

Recursively partition plane into 4 quadrants. 

Implementation:  4-way tree.

Primary reason to choose quad trees over grid methods: 

                             good performance in the presence of clustering

a

b

c

e

f

g h

d

a h

d ge

b c

f

public class QuadTree
{
   private Quad quad;
   private Value value;
   private QuadTree NW, NE, SW, SE;
}

actually a trie
partitioning on bits of coordinates

(01..., 00...)

(0..., 1...)
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Curse of Dimensionality

Range search / nearest neighbor in k dimensions?

Main application.  Multi-dimensional databases.

3D space.  Octrees:  recursively divide 3D space into 8 octants.

100D space.  Centrees:  recursively divide into 2100 centrants???

Raytracing with octrees

http://graphics.cs.ucdavis.edu/~gregorsk/graphics/275.html
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2D Trees

Recursively partition plane into 2 halfplanes. 

Implementation:  BST, but alternate using x and y coordinates as key.

• Search gives rectangle containing point.

• Insert further subdivides the plane.

even levels

q

p

points

left of p

points

right of p

points

below q

points

above q
odd levels

p

q

15

Near Neighbor Search

Useful extension to symbol-table ADT for records with metric keys.

• Insert a k dimensional point.

• Near neighbor search:  given a point p, which point in data structure 

is nearest to p?

Need concept of distance, not just ordering.

kD trees provide fast, elegant solution.

• Recursively search subtrees that could

have near neighbor (may search both).

• O(log N) ?

Yes, in practice
(but not proven)
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kD Trees

kD tree.  Recursively partition k-dimensional space into 2 halfspaces. 

Implementation:  BST, but cycle through dimensions ala 2D trees.

Efficient, simple data structure for processing k-dimensional data.

• adapts well to clustered data.

• adapts well to high dimensional data.

• widely used.

• discovered by an undergrad in an algorithms class!

level ! i (mod k)

points

whose ith

coordinate

is less than p’s

points

whose ith

coordinate

is greater than p’s

p
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Summary

Basis of many geometric algorithms:  search in a planar subdivision.

grid 2D tree Voronoi diagram
intersecting

lines

basis #N h-v lines N points N points #N lines

representation
2D array
of N lists

N-node BST
N-node 
multilist

~N-node BST

cells ~N squares N rectangles N polygons ~N triangles

search cost 1 log N log N log N

extend to kD? too many cells easy
cells too 

complicated
use (k-1)D
hyperplane
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Search for intersections

Problem.  Find all intersecting pairs among set of N geometric objects.

Applications.  CAD, games, movies, virtual reality.

Simple version:  2D, all objects are horizontal or vertical line segments.

Brute force.  Test all $(N2) pairs of line segments for intersection.

Sweep line.  Efficient solution extends to 3D and general objects.

Sweep vertical line from left to right.

• x-coordinates define events.

• left endpoint of h-segment:  insert y coordinate into ST.

• right endpoint of h-segment:  remove y coordinate from ST.

• v-segment:  range search for interval of y endpoints.
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Orthogonal segment intersection search:  Sweep-line algorithm

range searchinsert y

delete y
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Orthogonal segment intersection:  Sweep-line algorithm

Reduces 2D orthogonal segment intersection search to 1D range search!

Running time of sweep line algorithm.

• Put x-coordinates on a PQ (or sort). O(N log N)

• Insert y-coordinate into SET.   O(N log N)

• Delete y-coordinate from SET.              O(N log N)

• Range search.                 O(R + N log N) 

Efficiency relies on judicious use of data structures.

N = # line segments
R = # intersections
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Immutable H-V segment ADT

public final class SegmentHV implements Comparable<SegmentHV>
{
   public final int x1, y1; 
   public final int x2, y2; 

   public SegmentHV(int x1, int y1, int x2, int y2)
   {  ...  }  
   public boolean isHorizontal()
   {  ...  }  
   public boolean isVertical()
   {  ...  }  
   public int compareTo(SegmentHV b)
   {  ...  }  
   public String toString()
   {  ...  }  
}

compare by x-coordinate;
break ties by y-coordinate

(x1, y) (x2, y)

horizontal segment vertical segment

(x, y1)

(x, y2)
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Sweep-line event

public class Event implements Comparable<Event>
{
   private int time;
   private SegmentHV segment;

   public Event(int time, SegmentHV segment)
   {
      this.time    = time; 
      this.segment = segment;
   }

   public int compareTo(Event b)
   {
      return a.time - b.time;
   }
}

initialize
PQ

vertical
segment
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Sweep-line algorithm:  Initialize events

MinPQ<Event> pq = new MinPQ<Event>();

for (int i = 0; i < N; i++)
{
   if (segments[i].isVertical())
   {
      Event e = new Event(segments[i].x1, segments[i]);
      pq.insert(e);
   }
   else if (segments[i].isHorizontal())
   {
      Event e1 = new Event(segments[i].x1, segments[i]);
      Event e2 = new Event(segments[i].x2, segments[i]);
      pq.insert(e1);
      pq.insert(e2);
   }
}

horizontal
segment
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Sweep-line algorithm:  Simulate the sweep line

int INF = Integer.MAX_VALUE;

SET<SegmentHV> set = new SET<SegmentHV>();

while (!pq.isEmpty())
{
   Event e = pq.delMin();
   int sweep = e.time;
   SegmentHV segment = e.segment; 
   
   if (segment.isVertical())
   {
      SegmentHV seg1, seg2;
      seg1 = new SegmentHV(-INF, segment.y1, -INF, segment.y1);
      seg2 = new SegmentHV(+INF, segment.y2, +INF, segment.y2);
      for (SegmentHV seg : set.range(seg1, seg2))
          System.out.println(segment + " intersects " + seg);                
   }

   else if (sweep == segment.x1) set.add(segment);
   else if (sweep == segment.x2) set.remove(segment);
}
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General line segment intersection search

Extend sweep-line algorithm

• Maintain order of segments that intersect sweep line by y-coordinate.

• Intersections can only occur between adjacent segments.

• Add/delete line segment  %  one new pair of adjacent segments.

• Intersection  %  swap adjacent segments.

order of segments

A

C

B

ABC ACB

D

ACD CADA AB

insert segment

delete segment

intersectionACBD CA A
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Line Segment Intersection:  Implementation

Efficient implementation of sweep line algorithm.

• Maintain PQ of important x-coordinates:  endpoints and intersections.

• Maintain SET of segments intersecting sweep line, sorted by y.

• O(R log N + N log N).

Implementation issues.

• Degeneracy.

• Floating point precision.

• Use PQ, not presort (intersection events are unknown ahead of time).

to support "next largest"
and "next smallest" queries
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Algorithms and Moore's Law

Rectangle intersection search.  Find all intersections among h-v rectangles.

Application.  Design-rule checking in VLSI circuits.
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Algorithms and Moore's Law

Early 1970s:  microprocessor design became a geometric problem.

• Very Large Scale Integration (VLSI).

• Computer-Aided Design (CAD).

Design-rule checking:

• certain wires cannot intersect

• certain spacing needed between

different types of wires

• debugging = rectangle intersection search
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Algorithms and Moore's Law

"Moore’s Law."  Processing power doubles every 18 months.

• 197x:  need to check N rectangles.

• 197(x+1.5):  need to check 2N rectangles on a 2x-faster computer.

Bootstrapping: we get to use the faster computer for bigger circuits

But bootstrapping is not enough if using a quadratic algorithm

• 197x: takes M days.

• 197(x+1.5): takes (4M)/2 = 2M days. (!)

 O(N log N) CAD algorithms are necessary to sustain Moore’s Law.

2x-faster
computer

quadratic
algorithm
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Rectangle intersection search

Move a vertical "sweep line" from left to right.

• Sweep line:  sort rectangles by x-coordinate and process in this order, 

stopping on left and right endpoints.

• Maintain set of intervals intersecting sweep line.

• Key operation:  given a new interval, does it intersect one in the set?



33

Support following operations.

• Insert an interval (lo, hi).

• Delete the interval (lo, hi).

• Search for an interval that intersects (lo, hi).

Non-degeneracy assumption.  No intervals have the same x-coordinate.

Interval Search Trees

(7, 10)

(5, 11)

(4, 8) (15, 18)

(17, 19)

(20, 22)
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Interval Search Trees

Interval tree implementation with BST.

• Each BST node stores one interval.

• use lo endpoint as BST key.

(4, 8)

(17, 19)

(5, 11) (20, 22)

(15, 18)

(7, 10)

(7, 10)

(5, 11)

(4, 8) (15, 18)

(17, 19)

(20, 22)
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Interval Search Trees

Interval tree implementation with BST.

• Each BST node stores one interval.

• BST nodes sorted on lo endpoint.

• Additional info:  store and maintain

max endpoint in subtree rooted at node.

(4, 8)

(17, 19)

(5, 11) (20, 22)

(15, 18)

(7, 10)
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18 22

18

10

8

(7, 10)

(5, 11)

(4, 8) (15, 18)

(17, 19)

(20, 22)
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Finding an intersecting interval

Search for an interval that intersects (lo, hi).

Case 1. If search goes right, then either

• there is an intersection in right subtree

• there are no intersections in either subtree.

Pf.  Suppose no intersection in right.

• (x.left == null)  %  trivial.

• (x.left.max < lo) %  for any interval (a, b) in left subtree of x,

we have b " max < lo.

Node x = root;
while (x != null)
{
   if (x.interval.intersects(lo, hi)) return x.interval;
   else if (x.left == null)  x = x.right;
   else if (x.left.max < lo) x = x.right;
   else                      x = x.left;
}
return null;

left subtree of x

(lo,hi)

max

(a, b)

defn of max
reason for
going right
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Finding an intersecting interval

Search for an interval that intersects (lo, hi).

Case 2.  If search goes left, then either

• there is an intersection in left subtree

• there are no intersections in either subtree.

Pf.  Suppose no intersection in left.  Then for any interval (a, b)

in right subtree,  a ! c > hi  % no intersection in right.

left subtree of x

max

(lo,hi) (a, b)

right subtree of x

(c,max)
intervals sorted
by left endpoint

no intersection
in left subtree

Node x = root;
while (x != null)
{
   if (x.interval.intersects(lo, hi)) return x.interval;
   else if (x.left == null)  x = x.right;
   else if (x.left.max < lo) x = x.right;
   else                      x = x.left;
}
return null;
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Interval Search Tree:  Analysis

Implementation.  Use a red-black tree to guarantee performance.

insert interval

Operation

delete interval

log N

Worst case

log N

find an interval that intersects (lo, hi) log N

find all intervals that intersect (lo, hi) R log N

can maintain auxiliary information
using log N extra work per op

N = # intervals
R = # intersections
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Rectangle intersection sweep-line algorithm:  Review

Move a vertical "sweep line" from left to right.

• Sweep line:  sort rectangles by x-coordinates and process in this order.

• Store set of rectangles that intersect the sweep line in an interval 

search tree (using y-interval of rectangle).

• Left side:  interval search for y-interval of rectangle, insert y-interval.

• Right side:  delete y-interval.
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VLSI Rules checking:  Sweep-line algorithm (summary)

Reduces 2D orthogonal rectangle intersection search to 1D interval search!

Running time of sweep line algorithm.

• Sort by x-coordinate.   O(N log N)

• Insert y-interval into ST.  O(N log N)

• Delete y-interval from ST.  O(N log N)

• Interval search.   O(R log N) 

Efficiency relies on judicious extension of BST.

Bottom line.

Linearithmic algorithm enables design-rules checking for huge problems

N = # line segments
R = # intersections



Geometric search summary: Algorithms of the day
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1D range search BST

kD range search kD tree      

1D interval

intersection search
interval tree

2D orthogonal line

intersection search

sweep line reduces to

1D range search

2D orthogonal rectangle 

intersection search

sweep line reduces to

1D interval intersection search


