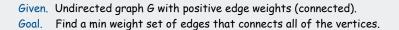
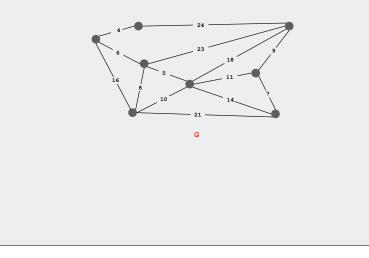


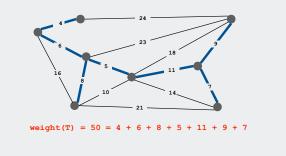
Minimum Spanning Tree





Minimum Spanning Tree

Given. Undirected graph G with positive edge weights (connected). Goal. Find a min weight set of edges that connects all of the vertices.



Brute force. Try all possible spanning trees.

- Problem 1: not so easy to implement.
- Problem 2: far too many of them. -

V^{V-2} spanning trees on the complete graph on V vertices [Cayley 1889]

MST Origin

Otakar Boruvka (1926).

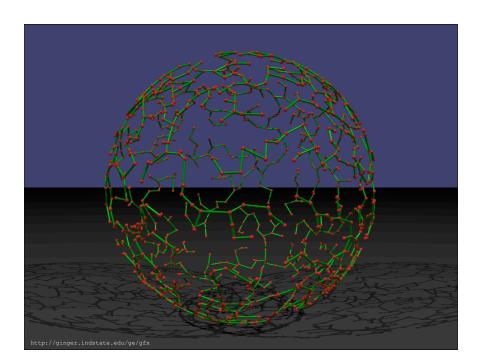
- Electrical Power Company of Western Moravia in Brno.
- Most economical construction of electrical power network.
- Concrete engineering problem is now a cornerstone problem-solving model in combinatorial optimization.

Otakar Boruvka

Applications

MST is fundamental problem with diverse applications.

- Network design. telephone, electrical, hydraulic, TV cable, computer, road
- Approximation algorithms for NP-hard problems. traveling salesperson problem, Steiner tree
- Indirect applications.
 max bottleneck paths
 LDPC codes for error correction
 image registration with Renyi entropy
 learning salient features for real-time face verification
 reducing data storage in sequencing amino acids in a protein
 model locality of particle interactions in turbulent fluid flows
 autoconfig protocol for Ethernet bridging to avoid cycles in a network
- Cluster analysis.



<text>

Two Greedy Algorithms

Kruskal's algorithm. Consider edges in ascending order of weight. Add to T the next edge unless doing so would create a cycle.

Prim's algorithm. Start with any vertex s and greedily grow a tree T from s. At each step, add to T the edge of min weight that has exactly one endpoint in T.

" Greed is good. Greed is right. Greed works. Greed clarifies, cuts through, and captures the essence of the evolutionary spirit. " - Gordon Gecko

Proposition. Both greedy algorithms compute an MST.

► weighted graph API ► cycles and cuts

- Pauvanceu topic

Weighted graph and Edge APIs

public class WeightedGraph

WeightedGraph(int V) void insert(Edge e) Iterable<Edge≻ adj(int v) int V() String toString()

create an empty graph with V vertices insert edge e return an iterator over edges incident to v return the number of vertices return a string representation

Edge abstraction needed for weights

public class Edge implements Comparable<Edge>

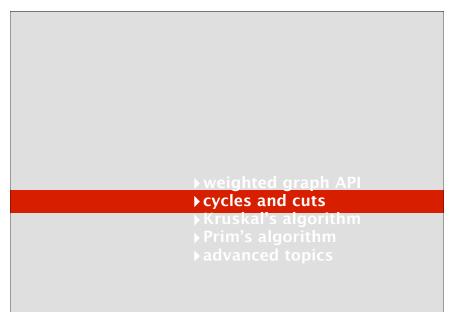
	Edge(int v, int w, double weight)	create an edge v-w with given weight
int	either()	return either endpoint
int	other(int v)	return the endpoint that's not v
double	weight()	return the weight
String	toString()	return a string representation

Weighted graph client public class WeightedGraph WeightedGraph(int V) create an empty graph with V vertices void insert(Edge e) insert edge e Iterable<Edge> adj(int v) return an iterator over edges incident to v int V() return the number of vertices String toString() return a string representation for (int v = 0; v < G.V(); v++) { for (Edge e : G.adj(v)) ł // edge v-w int w = e.other(v); ı iterate through all edges (once in each direction) 11

Weighted graph data type Identical to Graph. java but use Edge adjacency sets instead of int. public class WeightedGraph private final int V; no parallel edges private final SET<Edge>[] adj; public WeightedGraph(int V) this.V = V;adj = (SET<Edge>[]) new SET[V]; for (int v = 0; v < V; v++) adj[v] = new SET<Edge>(); } public void addEdge(Edge e) int v = e.either(), w = e.other(v); adj[v].add(e); adj[w].add(e); ł public Iterable<Edge> adj(int v) { return adj[v]; } 3 12

Weighted edge data type

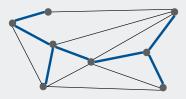
<pre>public class Edge implements Comparable<edge> { private final int v, w; private final double weight; public Edge(int v, int w, double weight) { this.v = v; this.w = w; this.weight = weight; } public int either() { return v; } public int other(int vertex) { if (vertex == v) return w; else return v; } public int weight() { return weight; } // See facing box for compare methods. }</edge></pre>	<pre>// sorted by edge weight public final static Comparator<edge> BY_WEIGHT = new ByWeight(); private static class ByWeight implements Comparator<edge> { public int compare(Edge e, Edge f) { if (e.weight < f.weight) return -1; if (e.weight > f.weight) return +1; return 0; } } // sorted by edge endpoints public int compareTo(Edge that) { if (this.v < that.v) return -1; if (this.v > that.v) return -1; if (this.w > that.w) return +1; return 0; } </edge></edge></pre>
	13



Spanning Tree

MST. Given connected graph G with positive edge weights, find a min weight set of edges that connects all of the vertices.

Def. A spanning tree of a graph G is a subgraph T that is connected and acyclic.



Property. MST of G is always a spanning tree.

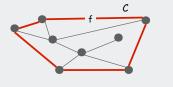
Greedy Algorithms

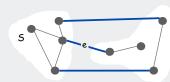
15

Simplifying assumption. All edge weights w_e are distinct.

Cycle property. Let C be any cycle, and let f be the max weight edge belonging to C. Then the MST does not contain f.

Cut property. Let S be any subset of vertices, and let e be the min weight edge with exactly one endpoint in S. Then the MST contains e.





f is not in the MST

e is in the MST

Cycle Property

Simplifying assumption. All edge weights we are distinct.

Cycle property. Let C be any cycle, and let f be the max weight edge belonging to C. Then the MST T* does not contain f.

Pf. [by contradiction]

- Suppose f belongs to T*. Let's see what happens.
- Deleting f from T* disconnects T*. Let S be one side of the cut.
- Some other edge in C, say e, has exactly one endpoint in S.
- $T = T^* \cup \{e\} \{f\}$ is also a spanning tree.
- Since w_e < w_f, weight(T) < weight(T*).
- Contradicts minimality of T*. •

s f MST T* 17

Cut Property

Simplifying assumption. All edge weights w_e are distinct.

Cut property. Let S be any subset of vertices, and let e be the min weight edge with exactly one endpoint in S. Then the MST T* contains e.

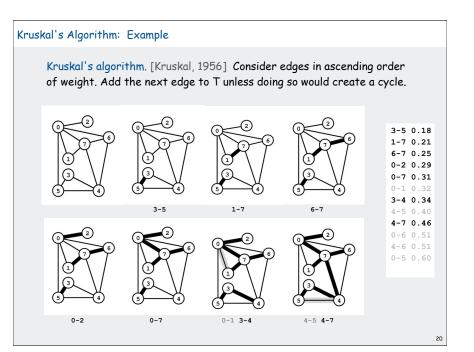
cycle C

MST T*

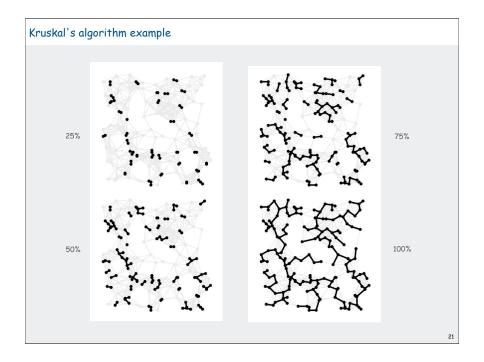
18

Pf. [by contradiction]

- Suppose e does not belong to T*. Let's see what happens.
- Adding e to T* creates a (unique) cycle C in T*.
- Some other edge in C, say f, has exactly one endpoint in S.
- $T = T^* \cup \{e\} \{f\}$ is also a spanning tree.
- Since w_e < w_f, weight(T) < weight(T*).
- Contradicts minimality of T*. •



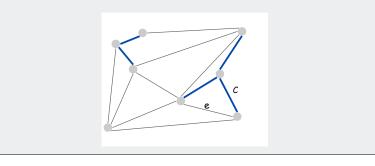
weighted graph API
 cycles and cuts
 Kruskal's algorithm
 Prim's algorithm
 advanced algorithms
 clustering



Kruskal's algorithm correctness proof

Proposition. Kruskal's algorithm computes the MST.

- Pf. [case 1] Suppose that adding e to T creates a cycle C:
- e is the max weight edge in C (weights come in increasing order).
- e is not in the MST (cycle property).



Kruskal's algorithm correctness proof

Proposition. Kruskal's algorithm computes the MST.

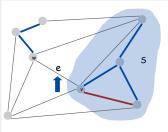
Pf. [case 2] Suppose that adding e = (v, w) to T does not create a cycle:

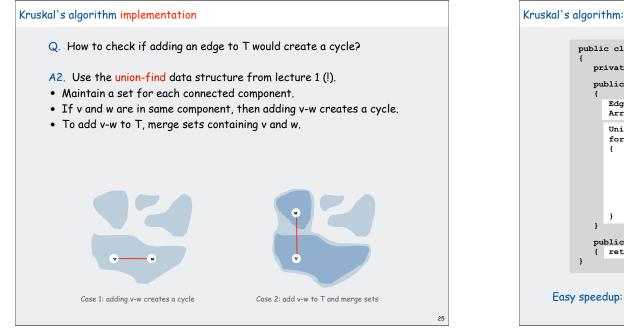
. .

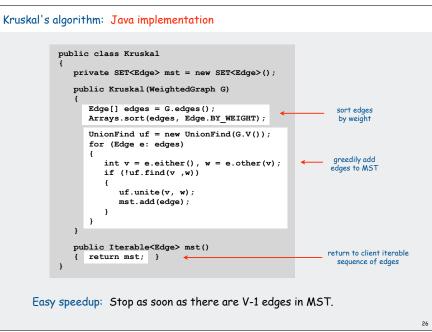
- let S be the vertices in v's connected component.
- w is not in S.
- e is the min weight edge with exactly one endpoint in S.
- e is in the MST (cut property).

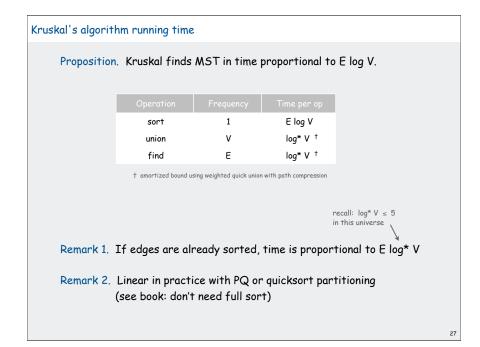
- Q. How to check if adding an edge to T would create a cycle?
- A1. Naïve solution: use DFS.
- O(V) time per (undirected) cycle check.
- O(E V) time overall.

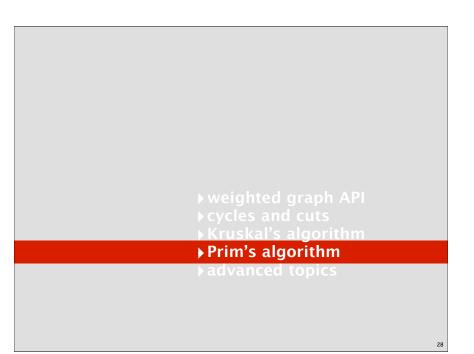
23





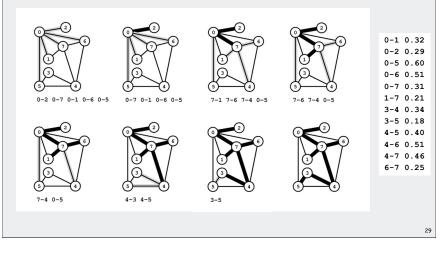


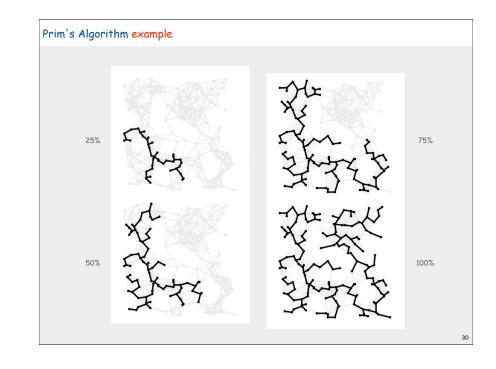




Prim's algorithm example

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959] Start with vertex 0 and greedily grow tree T. At each step, add edge of min weight that has exactly one endpoint in T.

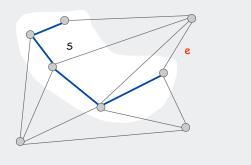




Prim's algorithm correctness proof

Proposition. Prim's algorithm computes the MST. Pf.

- Let S be the subset of vertices in current tree T.
- Prim adds the min weight edge e with exactly one endpoint in S.
- e is in the MST (cut property) •



31

Prim's algorithm implementation

- Q. How to find min weight edge with exactly one endpoint in S?
- A1. Brute force: try all edges.
- O(E) time per spanning tree edge.
- O(E V) time overall.

Prim's algorithm implementation

- Q. How to find min weight edge with exactly one endpoint in S?
- A2. Maintain a priority queue of vertices connected by an edge to S
- Delete min to determine next vertex v to add to S.
- Disregard v if already in S.
- Add to PQ any vertex brought closer to S by v.

Running time.

- log V steps per edge (using a binary heap).
- E log V steps overall.

Note: This is a lazy version of implementation in Algs in Java

lazy: put all adjacent vertices (that are not already in MST) on PQ eager: first check whether vertex is already on PQ and decrease its key Key-value priority queue

Associate a value with each key in a priority queue.

API:

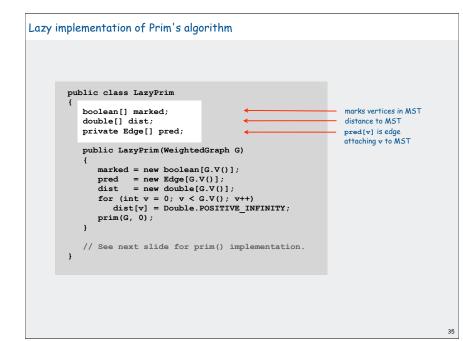
33

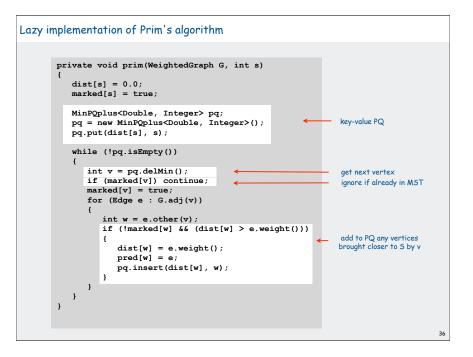
public class MinPQplus<Key extends Comparable<Key>, Value>

	MinPQplus()	create a key-value priority queue
void	<pre>put(Key key, Value val)</pre>	put key-value pair into the priority queue
Value	delMin()	return value paired with minimal key

Implementation:

- start with same code as standard heap-based priority queue
- use a parallel array vals[] (value associated with keys[i] is vals[i])
- modify exch() to maintain parallel arrays (do exch in vals[])
- modify delMin() to return value

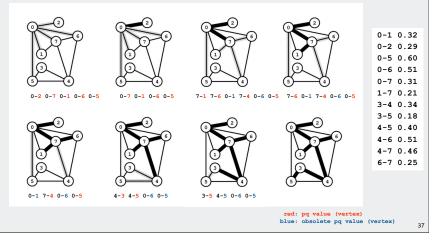




Prim's algorithm (lazy) example

Priority queue key is distance (edge weight); value is vertex

Lazy version leaves obsolete entries in the PQ therefore may have multiple entries with same value



Eager implementation of Prim's algorithm

Use indexed priority queue that supports:

- contains (v): is there a key associated with value v?
- decreaseKey(key, v): decrease the key associated with v to key.

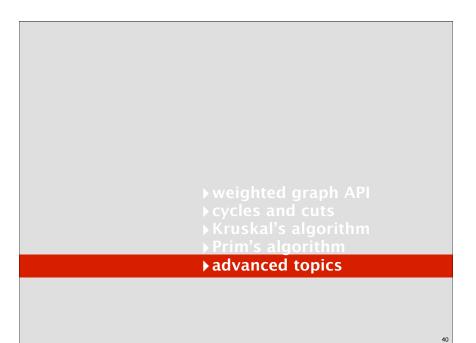
Implementation. More complicated than MinPQ, see text.

Main benefit: reduces PQ size guarantee from E to V.

- Not important for the huge sparse graphs found in practice.
- PQ size is far smaller in practice.
- Widely used, but practical utility is debatable.

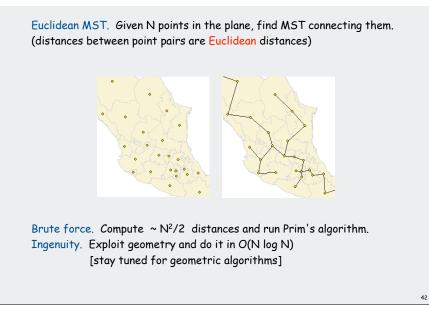
Removing the distinct edge weight assumption				
Simplifying assumption. All edge weights w_e are distinct.				
Approach 1: introduce tie-breaking rule for compare().				
<pre>public int compare(Edge e, Edge f) { if (e.weight < f.weight) return -1; if (e.weight > f.weight) return +1; if (e.v < f.v) return -1; if (e.v > f.v) return +1; if (e.w < f.w) return -1; if (e.w > f.w) return +1; return 0; }</pre>				
Approach 2: Prim and Kruskal still find MST if equal weights! (only our proof of correctness fails)				

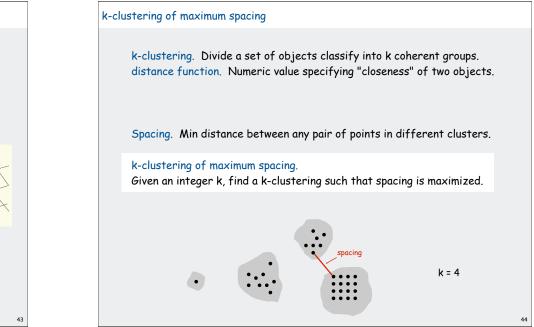
39



Advanced MST theorems: does an algorithm with a linear-time guarantee exist?					
Year Worst Case Discovered By					
1975 E log log V Yao					
1976 E log log V Cheriton-Tarjan					
1984 E log* V, E + V log V Fredman-Tarjan					
1986 E log (log* V) Gabow-Galil-Spencer-Tarjan					
1997 Ε α(V) log α(V) Chazelle					
2000 E α(V) Chazelle					
2002 optimal Pettie-Ramachandran					
20xx E ???					
deterministic comparison-based MST algorithms					
Year Problem Time Discovered By					
1976 planar MST E Cheriton-Tarjan					
1992 MST verification E Dixon-Rauch-Tarjan					
1995 randomized MST E Karger-Klein-Tarjan					
related problems					
	41				

Euclidean MST





Scientific application: clustering

k-clustering. Divide a set of objects classify into k coherent groups. distance function. Numeric value specifying "closeness" of two objects.

Fundamental problem.

Divide into clusters so that points in different clusters are far apart.

Applications.

- Routing in mobile ad hoc networks.
- Identify patterns in gene expression.
- Document categorization for web search.
- Similarity searching in medical image databases
- Skycat: cluster 10⁹ sky objects into stars, quasars, galaxies.

outbreak of cholera deaths in London in 1850s Reference: Nina Mishra, HP Labs

Single-link clustering algorithm

"Well-known" algorithm for single-link clustering:

- Form V clusters of one object each.
- Find the closest pair of objects such that each object is in a different cluster, and add an edge between them.
- Repeat until there are exactly k clusters.

Observation. This procedure is precisely Kruskal's algorithm (stop when there are k connected components).

Proposition. Kruskal's algorithm finds a k-clustering of maximum spacing.

Alternate algorithm. Run Prim and delete k-1 edges of largest weight.

Clustering application: dendrograms

Dendrogram.

45

Scientific visualization of hypothetical sequence of evolutionary events.

- Leaves = genes.
- Internal nodes = hypothetical ancestors.

