Undirected Graphs

```
Graph API
* maze exploration
depth-first search
breadth-first search
> connected components
> challenges
```

References:
Algorithms in Java, Chapters 17 and 18

Graph applications		
	graph	vertices
communication	telephones, computers	fiber optic cables
circuits	gates, registers, processors	wires
mechanical	joints	rods, beams, springs
hydraulic	reservoirs, pumping stations	pipelines
financial	stocks, currency	transactions
transportation	street intersections, airports	highways, airway routes
scheduling	tasks	precedence constraints
software systems	functions	function calls
internet	web pages	hyperlinks
games	board positions	legal moves
social relationship	people, actors	neurons
neural networks	priendships, movie casts	
protein networks		
chemical compounds	molecules	synapses

Undirected graph

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

- Interesting and broadly useful abstraction.
- Challenging branch of computer science and discrete math.
- Hundreds of graph algorithms known.
- Thousands of practical applications.

Power transmission grid of Western US

The Internet

Graph terminology

Path. Is there a path between s to \dagger ?

Shortest path. What is the shortest path between sand t?
Longest path. What is the longest simple path between s and t ?
Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?
Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?
Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?

First challenge: Which of these problems is easy? difficult? intractable?

Graph API

maze exploration
depth-first search
breadth-first search
connected component
challenges

Graph representation

Vertex representation.

- This lecture: use integers between 0 and $\mathrm{v}-1$.
- Real world: convert between names and integers with symbol table.

Other issues. Parallel edges, self-loops.

Graph API

public class Graph (graph data type)

Graph (int V)
d addEdge(int v, int w)
Iterable<Integer> adj(int v)
int V()
String toString()

Client that iterates through all edges
Graph G = new Graph (V, E) StdOut.println(G);
for (int $v=0 ; \mathrm{v}<\mathrm{G} . \mathrm{V}() ; \mathrm{v}++$) or (int w : G.adj(v)) // process edge v-w
create an empty graph with \vee vertices create a random graph with \vee vertices, E edges add an edge v -w
return an iterator over the neighbors of v
return number of vertices return a string representation

Set of edges representation

Store a list of the edges (linked list or array)

Adjacency-matrix graph representation: Java implementation

```
public class Graph
l private int V;
    private int V;
    public Graph(int v)
        this.v = v;
        adj = new boolean[V][V]: «% <
    }
    public void addEdge(int v, int w)
        {\mp@code{adj[v][w] = true;}}\begin{array}{l}{\operatorname{adj[v][w]}[v] = true; }
    }
    public Iterable<Integer> adj(int v)
    return new AdjIterator(v); «_ iterator for
    }
}
```

Adjacency-list graph representation

Maintain vertex-indexed array of lists (implementation omitted)

$0: \quad 5 \longmapsto 2 \longleftrightarrow 1 \longleftrightarrow 6$ -
1: 0. two entries

$0 \longmapsto 4 \longleftrightarrow 3$ -
$4 \longrightarrow 0$ •
8 •
: 7 •
$10 \longleftrightarrow 11 \longleftrightarrow 12$ •
9 •
$9 \longleftrightarrow 12$ •
$9 \longrightarrow 11$ •

Adjacency-SET graph representation: Java implementation

Adjacency-SET graph representation

Maintain vertex-indexed array of SETs
(take advantage of balanced-tree or hashing implementations)

Graph representations

Graphs are abstract mathematical objects, BUT

- ADT implementation requires specific representation.
- Efficiency depends on matching algorithms to representations.

Maze exploration

Maze graphs.

- Vertex = intersections.
- Edge = passage.

Goal. Explore every passage in the maze.

Trémaux Maze Exploration

Trémaux maze exploration.

- Unroll a ball of string behind you.
- Mark each visited intersection by turning on a light.
- Mark each visited passage by opening a door.

First use? Theseus entered labyrinth to kill the monstrous Minotaur; Ariadne held ball of string.

Claude Shannon (with Theseus mouse)

Graph-processing challenge 1:
Problem: Flood fill
Assumptions: picture has millions to billions of pixels

How difficult?

1) any COS126 student could do it
2) need to be a typical diligent COS226 student
3) hire an expert
4) intractable
5) no one knows

Depth-first search

Goal. Systematically search through a graph

Idea. Mimic maze exploration.
Typical applications

- find all vertices connected to a given s
- find a path from s to t

DFS (to visit a vertex s)

Mark sas visited.

Visit all unmarked vertices v adjacent to s .

Running time.

- $O(E)$ since each edge examined at most twice
- usually less than V to find paths in real graphs

Design pattern for graph processing

Typical client program.

- Create a Graph.
- Pass the Graph to a graph-processing routine, e.g., DFSearcher.
- Query the graph-processing routine for information.

```
Client that prints all vertices connected to (reachable from)s
public static void main(String[] args)
    In in = new In(args[0]);
    Graph G = new Graph(in);
    int s = din dfs = new DFSearcher (G, s)
    for (int v = 0; v < G.v(); v++)
            System.out.println(v)
}
```

Decouple graph from graph processing.

Connectivity application: Flood fill

Change color of entire blob of neighboring red pixels to blue.
Build a grid graph

- vertex: pixel.
- edge: between two adjacent lime pixels.
- blob: all pixels connected to given pixel.

client can ask whether any vertex is
connected to s
\}

Connectivity Application: Flood Fill

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph

- vertex: pixel.
- edge: between two adjacent red pixels.
- blob: all pixels connected to given pixel.

33

Graph-processing challenge 3:

Problem: Find a path from s to t.
Assumptions: any path will do

How difficult?

1) any CS126 student could do it
2) need to be a typical diligent CS226 student
3) hire an expert
4) intractable
5) no one knows

Graph-processing challenge 2

Problem: Is there a path from s to t?

How difficult?

1) any CS126 student could do it
2) need to be a typical diligent CS226 student

3) hire an expert
4) intractable
5) no one knows

Paths in graphs

Is there a path from s to t ? If so, find one.

Paths in graph
Is there a path from s to t ?

method	preprocess time	query time	space
Union Find	$V+E \log ^{\star} V$	$\log ^{*} V+$	V
DFS	$E+V$	1	$E+V$
		+ amortized	

If so, find one.

- Union-Find: no help (use DFS on connected subgraph)
- DFS: easy (stay tuned)

UF advantage. Can intermix queries and edge insertions.
DFS advantage. Can recover path itself in time proportional to its length.

Depth-first-search (pathfinding)

```
public class DFSearcher
{
    private int[] pred;\longleftarrow
    public DFSearcher(Graph G, int s) of DFS tree
    pub
        Mred = new int[G.V()];
            pred[v] = -1;
    }
    private void dfs(Graph G, int v)
        marked[v] = true;
        marked[v] = true;
            if (!marked[w])
            if
                pred[w] = v; «
            dfs(G, w);
        }
    public Iterable<Integer> path(int v) }\longleftarrow\quad\begin{array}{c}{\mathrm{ add method for client}}
}
```


Keeping track of paths with DFS

DFS tree. Upon visiting a vertex v for the first time, remember that you came from pred[v] (parent-link representation).

Retrace path. To find path between s and v, follow pred back from v.

©

Depth-first-search (pathfinding iterator)

public Iterable<Integer> path(int v)

Stack<Integer> path $=$ new Stack<Integer>() ; while (v !=-1 \&\& marked[v])

1
list.push(v) ;
v = pred[v];
\}
return path;
\}
\}

DFS summary

Enables direct solution of simple graph problems.

- Find path from s to t. $\quad \checkmark$
- Connected components (stay tuned).
- Euler tour (see book)
- Cycle detection (simple exercise).
- Bipartiteness checking (see book).

Basis for solving more difficult graph problems

- Biconnected components (see book).
- Planarity testing (beyond scope)

Breadth-first search scaffolding

public class BFSearcher

Breadth-first search. Put unvisited vertices on a queue
Shortest path. Find path from s to t that uses fewest number of edges.

BFS (from source vertex s)

Put s onto a FIFO queue.
Repeat until the queue is empty:

- remove the least recently added vertex v
add each of v's unvisited neighbors to the queue and mark them as visited.

Property. BFS examines vertices in increasing distance from s.

Graph AP
maze explor tior
breadth-first search
challenges

Breadth First Search

Depth-first search. Put unvisited vertices on a stack

```
private void bfs(Graph G, int s)
    Queue<Integer> q = new Queue<Integer>()
    q.enqueue(s);
    while (!q.isEmpty())
    { int v = q.dequeue();
        for (int w : G.adj(v))
        {
            if (dist[w] > G.V())
            l
            q. enqueue (w)
            dist[w] = dist[v] + 1;
        }
    }
}
}
```


Connectivity Queries

Def. Vertices v and w are connected if there is a path between them. Def. A connected component is a maximal set of connected vertices.

Goal. Preprocess graph to answer queries: is v connected to w? in constant time

[^0]- Kevin Bacon numbers.
- Facebook.
- Fewest number of hops in a communication network.

Connected Components

Goal. Partition vertices into connected components.

Connected components
Initialize all vertices v as unmarked.
For each unmarked vertex v, run DFS and identify all vertices discovered as part of the same connected component.

preprocess Time	query Time	extra Space
$E+V$	1	V

Connected Components

Depth-first search for connected components

```
public class CCFinder
i
    private final static int UNMARKED = -1;
    private int components;
    private int[] cc
    public CCFinder (Graph G)
        for (int v = 0; v < G.v(); v++)
            (int v = 0; v < G.v(); v++)
                { dfs(G, v); components++;
    }
    private void dfs(Graph G, int v)
        cc[v] = components
            for (int w : G.adj(v))
            if (cc[w] == UNMARKED) dfs(G, w)
        }
    public int connected(int v, int w) « constant-time
    i return cc[v] == cc[w]; }
}
```


Connected components application: Image processing

Goal. Read in a 2D color image and find regions of connected pixels that have the same color

Input: scanned image
Output: number of red and blue states

Connected components application: Image Processing

Goal. Read in a 2D color image and find regions of connected pixels that have the same color.

Efficient algorithm.

- Connect each pixel to neighboring pixel if same color.
- Find connected components in resulting graph.

Graph-processing challenge 5:

Problem: Find a path from s to \dagger

Assumptions: any path will do

randomized iterators

Which is faster, DFS or BFS?

1) DFS
2) BFS
3) about the same

4) depends on the graph
5) depends on the graph representation

Graph-processing challenge 6

Problem: Find a path from s to t that uses every edge
Assumptions: need to use each edge exactly once

How difficult?

1) any CS126 student could do it
2) need to be a typical diligent CS226 student
3) hire an expert

4) intractable
5) no one knows

Graph-processing challenge 7:

Problem: Find a path from s to t that visits every vertex
Assumptions: need to visit each vertex exactly once

How difficult?

1) any CS126 student could do it
2) need to be a typical diligent CS226 student
3) hire an expert

$0-1$
$0-6$
$0-2$
$4-3$
$5-3$
$5-4$
$0-5$
$6-4$
$1-2$
$2-6$
4) intractable
5) no one knows

Euler tour. Is there a cyclic path that uses each edge exactly once? Answer. Yes iff connected and all vertices have even degree. Tricky DFS-based algorithm to find path (see Algs in Java).

Graph-processing challenge 8:
Problem: Are two graphs identical except for vertex names?

How difficult?

1) any CS126 student could do it
2) need to be a typical diligent CS226 student
3) hire an expert
4) intractable
5) no one knows

Graph-processing challenge 9:
Problem: Can you lay out a graph in the plane without crossing edges?

How difficult?

1) any CS126 student could do it
2) need to be a typical diligent CS226 student
3) hire an expert
4) intractable
5) no one knows

[^0]: Union-Find? not quite

