Balanced Trees

```
 2-3-4 trees
red-black trees
B-trees
```

References:
Algorithms in Java, Chapter 13
Algorithms in Java, Chapter 13
http://www.cs.princeton.edu/introalgsds/44balanced

Summary of symbol-table implementations

| implementation | guarantee | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| search | insert | delete | search | average case | insert | delete | ordered
 iteration? |
| unordered array | N | N | N | $N / 2$ | $N / 2$ | $N / 2$ | no |
| ordered array | $\lg N$ | N | N | $\lg N$ | $N / 2$ | $N / 2$ | yes |
| unordered list | N | N | N | $N / 2$ | N | $N / 2$ | no |
| ordered list | N | N | N | $N / 2$ | $N / 2$ | $N / 2$ | yes |
| BST | N | N | N | $1.39 \lg N$ | $1.39 \lg N$ | $?$ | yes |
| randomized BST | $7 \lg N$ | $7 \lg N$ | $7 \lg N$ | $1.39 \lg N$ | $1.39 \lg N$ | $1.39 \lg N$ | yes |

Randomized BSTs provide the desired guarantees

$$
\begin{gathered}
\uparrow \\
\text { probabilistic, with } \\
\text { exponentially mall } \\
\text { chance of quadratactic time }
\end{gathered}
$$

Symbol Table Review

Symbol table: key-value pair abstraction.

- Insert a value with specified key.
- Search for value given key.
- Delete value with given key.

Randomized BST.

- Guarantee of $\sim c \lg N$ time per operation (probabilistic)
- Need subtree count in each node.
- Need random numbers for each insert/delete op.

This lecture. 2-3-4 trees, left-leaning red-black trees, B-trees.

$$
\uparrow_{\text {new for Fall } 2007!}
$$

Typical random BSTs

$N=250$
$\lg N \approx 8$
$1.39 \lg N \approx 11$

This lecture: Can we do better?

Searching in a 2-3-4 Tree

Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

Ex. Search for L
 7

2-3-4 Tree

2-3-4 tree. Generalize node to allow multiple keys; keep tree balanced.

Perfect balance. Every path from root to leaf has same length.
Allow 1, 2, or 3 keys per node.

- 2-node: one key, two children.
- 3-node: two keys, three children.
- 4-node: three keys, four children.

Insertion in a 2-3-4 Tree

Insert.

- Search to bottom for key.

Ex. Insert B

Insertion in a 2-3-4 Tree

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node.

Ex. Insert B

Insertion in a 2-3-4 Tree

Insert.

- Search to bottom for key

- 2-node at bottom: convert to 3-node.
- 3-node at bottom: convert to 4-node.

Ex. Insert X

Insertion in a 2-3-4 Tree

Insert.

- Search to bottom for key.

Ex. Insert X

Insertion in a 2-3-4 Tree

Insert.

- Search to bottom for key.

Ex. Insert H

Insertion in a 2-3-4 Tree

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node.
- 3-node at bottom: convert to 4-node.
- 4-node at bottom: ??

Ex. Insert H

Splitting 4-nodes in a 2-3-4 tree

Idea: split 4-nodes on the way down the tree.

- Ensures that most recently seen node is not a 4-node.
- Transformations to split 4-nodes:

Invariant. Current node is not a 4-node.

Consequences

- 4-node below a 4-node case never happens
- insertion at bottom node is easy since it's not a 4-node

Splitting a 4-node in a 2-3-4 tree

Idea: split the 4-node to make room

Problem: Doesn't work if parent is a 4-node Solution 1: Split the parent (and continue splitting up while necessary). Solution 2: Split 4-nodes on the way down.

Splitting a 4-node below a 2-node in a 2-3-4 tree

A local transformation that works anywhere in the tree

Splitting a 4-node below a 3-node in a 2-3-4 tree

A local transformation that works anywhere in the tree

$$
\begin{array}{rr}
1,1 \\
111
\end{array} \quad 111
$$

17

Growth of a 2-3-4 tree
Tree grows up from the bottom

Balance in 2-3-4 trees

Key property: All paths from root to leaf have same length

Tree height.

- Worst case: $\lg N$ [all 2-nodes]
- Best case: $\log _{4} N=1 / 2 \lg N$ [all 4-nodes]
- Between 10 and 20 for a million nodes.
- Between 15 and 30 for a billion nodes.

2－3－4 Tree：Implementation？

Direct implementation is complicated，because：
－Maintaining multiple node types is cumbersome．
－Implementation of getChild（）involves multiple compares
－Large number of cases for split（），make3Node（），and make4Node（）．

```
private void insert(Key key, Val val)
    Node x = root;
        while (x.getChild(key) != null)
    {
        x = x.getChild(key)
        if (x.is4Node()) x.split();
    if
            (x.is2Node()) x.make3Node(key, val);
        else if (x.is3Node()) x.make4Node(key, val);
```

\}
fantasy code
Bottom line：could do it，but stay tuned for an easier way．

Summary of symbol－table implementations

implementation	guarantee			average case			ordered iteration？
	search	insert	delete	search	insert	delete	
unordered array	N	N	N	N／2	N／2	N／2	no
ordered array	$\lg N$	N	N	$\lg N$	N／2	N／2	yes
unordered list	N	N	N	N／2	N	N／2	no
ordered list	N	N	N	N／2	N／2	N／2	yes
BST	N	N	N	$1.38 \lg N$	$1.38 \lg N$	？	yes
randomized BST	$7 \lg N$	$7 \lg N$	$7 \lg N$	$1.38 \lg N$	$1.38 \lg N$	$1.38 \lg N$	yes
2－3－4 tree	$c \lg N$	$c \lg N$		$c \lg N$	$c \lg N$		yes

Left－leaning red－black trees（Guibas－Sedgewick， 1979 and Sedgewick，2007）
1．Represent 2－3－4 tree as a BST．
2．Use＂internal＂left－leaning edges for 3 －and 4－nodes．

Key Properties
－elementary BST search works
－1－1 correspondence between 2－3－4 and left－leaning red－black trees

Left-leaning red-black trees

1. Represent 2-3-4 tree as a BST.

2. Use "internal" left-leaning edges for 3- and 4-nodes.

Disallowed

- right-leaning red edges

Insert implementation for red-black trees (skeleton)

```
public class bST<Key extends Comparable<Key>, value>
            implements Iterable<Key>
    private static final boolean RED = true;
    Mrivate static final boolean RED = true;
    private Node root;
    private class Node
        Key key;
            Value val;
            Node left, right; color of incoming link
            Node(Key key, value val, boolean color)
            i 
            this.key = key;
            this.val = val;
            this.color = color
            }
    1,
    f
    public void put(Key key, value val)
    root = put(root, key, val)
        root.color = BLACK;
, }
```

helper method to test node color
private boolean isRed (Node x)
if ($x==$ null) return false
return (x. color $==$ RED);

Search implementation for red-black trees

```
public Val get(Key key)
    Node x = root;
    while (x != null
        int cmp = key.compareTo(x.key);
        f (cmp == 0) return x.val
        else if (cmp < 0) x = x.left;
        else if (cmp < 0) x = x.left;
    }
    return null;
```

\}

Search code is the same as elementary BST (ignores the color) [runs faster because of better balance in tree]

Note: iterator code is also the same

Insert implementation for left-leaning red-black trees (strategy)

Basic idea: maintain 1-1 correspondence with 2-3-4 trees

1. If key found on recursive search reset value, as usual
2. If key not found insert a new red node at the bottom

3. Split 4-nodes on the way DOWN the tree.

Inserting a new node at the bottom in a LLRB tree

Maintain 1-1 correspondence with 2-3-4 trees

1. Add new node as usual, with red link to glue it to node above
2. Rotate left if necessary to make link lean left
,

Splitting a 4-node below a 3-node in a left-leaning red-black tree

Maintain correspondence with 2-3-4 trees

Splitting a 4-node below a 2-node in a left-leaning red-black tree

Maintain correspondence with 2-3-4 trees

Splitting 4-nodes a left-leaning red-black tree
The two transformations are the same

Insert implementation for left-leaning red-black trees (strategy revisited)

Basic idea: maintain 1-1 correspondence with 2-3-4 trees

Search as usual

- if key found reset value, as usual

- if key not found insert a new red node at the bottom
[might be right-leaning red link]

Split 4-nodes on the way DOWN the tree.

- right-rotate and flip color
- might leave right-leaning link higher up in the tree

NEW TRICK: enforce left-leaning condition on the way UP the tree.

- left-rotate any right-leaning link on search path
- trivial with recursion (do it after recursive calls)
- no other right-leaning links elsewhere

Note: nonrecursive top-down implementation possible, but requires keeping track of great-grandparent on search path (!) and lots of cases

Insert implementation for left-leaning red-black trees (code for basic operations)
Insert a new node at bottom

Split a 4-node

```
private Node splitFourNode(Node h)
    x = rotr(h).
        x = rotr (h); ( BLACK
        return x;
```

\}

Enforce left-leaning condition

```
private Node leanLeft(Node h)
    f = rotI (h);
        x=rotL(h); = x.left.color;
        x.left.color = RED
        return x
}
```

could be

could be
red or black

Insert implementation for left-leaning red-black trees (basic operations)

Insert a new node at bottom

Enforce left-leaning condition
left

$$
\xrightarrow{\text { rotate }}
$$

Insert implementation for left-leaning red-black trees (code)

Balance in left-leaning red-black trees

Why left-leaning trees?

Take your pick:

Proposition A. Every path from root to leaf has same number of black links
Proposition B. Never three red links in-a-row.
Proposition C. Height of tree is less than $3 \lg N+2$ in the worst case.

Property D. Height of tree is $\sim \lg N$ in typical applications
Property E. Nearly all 4-nodes are on the bottom in the typical applications.

Why left-leaning trees?

Simplified code

- left-leaning restriction reduces number of cases
- recursion gives two (easy) chances to fix each node
- short inner loop old
Same ideas simplify implementation of other operations
- delete min
- delete max
- delete

Built on the shoulders of many, many old balanced tree algorithms

- AVL trees
- 2-3 trees
- 2-3-4 trees
- skip lists

Bottom line: Left-leaning red-black trees are the simplest to implement
old code (that students had to learn in the past)

$$
\begin{aligned}
& \text { old code (that students had to learn in the past) } \\
& \text { private Node insert (Node x, Key key, value val, boolean sw) }
\end{aligned}
$$

if ($x=$ null)

if (isRed (x. left) \&\& isRed(x.right))
$\mathrm{x} \cdot \mathrm{cololor}=$ RED;
x .1 eft. color
x .
x. right.color $=$ BLACK

$\mathrm{x}=\mathrm{rotr}(\mathrm{x}) ;$
$\mathrm{x} . \operatorname{color}=$ BLACK; $; \mathbf{x}$.right.color $=$ RED
else // if (cmp > 0)

${ }^{\boldsymbol{f}}{ }_{\text {return }} \mathrm{x}$;
, return \times;
extremely tricky

Summary of symbol-table implementations

2-3-4 trees

> B-trees

B-Tree Example

B-Tree Example (cont)

Balanced trees in the wild

Red-black trees: widely used as system symbol tables

- Java: java.util.TreeMap, java.util.TreeSet.
- C_{++}STL: map, multimap, multiset.
- Linux kernel: linux/rbtree.h.

B-Trees: widely used for file systems and databases

- Windows: HPFS
- Mac: HFS, HFS+
- Linux: ReiserFS, XFS, Ex+3FS, JFS
- Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL

Bottom line: ST implementation with $\lg \mathrm{N}$ guarantee for all ops.

- Algorithms are variations on a theme: rotations when inserting.
- Easiest to implement, optimal, fastest in practice: LLRB trees
- Abstraction extends to give search algorithms for huge files: B-trees

Summary of symbol-table implementations

implementation	guarantee			average case			ordered iteration?
	search	insert	delete	search	insert	delete	
unordered array	N	N	N	N/2	N/2	N/2	no
ordered array	$\lg N$	N	N	$\lg N$	N/2	N/2	yes
unordered list	N	N	N	N/2	N	N/2	no
ordered list	N	N	N	N/2	N/2	N/2	yes
BST	N	N	N	$1.44 \lg N$	$1.44 \mathrm{lg} N$?	yes
randomized BST	$7 \lg N$	$7 \lg N$	$7 \lg N$	1.44 lg N	1.44 lg N	$1.44 \lg N$	yes
2-3-4 tree	$c \lg N$	$c \lg N$		$c \lg N$	$c \lg N$		yes
red-black tree	$2 \lg N$	$2 \lg N$	$2 \lg N$	$\lg N$	$\lg N$	$\lg N$	yes
B-tree	1	1	1	1	1	1	yes

B-Tree. Number of page accesses is $\log _{M} N$ per op.

