Binary Search Trees

```
basic implementations
t randomized BSTs
deletion in BSTs
```

References:
Algorithms in Java, Chapter 12 http://www.cs.princeton.ecuu/introalgsds/43bst

Elementary implementations: summary

implementation	worst case search		average case search		insert	ordered iteration?	operations on keys
unordered array	N	N	$\mathrm{N} / 2$	$\mathrm{~N} / 2$	no	equals()	

Challenge:
Efficient implementations of get() and put() and ordered iteration.

Binary Search Trees (BSTs)

Def. A BINARY SEARCH TREE is a binary tree in symmetric order.

A binary tree is either:

- empty
- a key-value pair and two binary trees [neither of which contain that key]
 associative array implementations
symmetric order means that
- every node has a key
- every node's key is larger than all keys in its left subtree smaller than all keys in its right subtree

BST representation

A BST is a reference to a Node.

A Node is comprised of four fields:

- A key and a value.
- A reference to the left and right subtree.
smaller keys larger keys

```
private class Node
    Key key;
    Key key;
    Node left, right;
```

\}

BST implementation (search)

public Value get(Key key)

1
Node $\mathrm{x}=$ root;
while (x ! = null)
$i_{i}^{\text {whi }}$
int cmp $=$ key. compareTo (x.key) ; if (cmp $==0$) return x .val; else if (cmp < 0) $x=x$.left else if $(\mathrm{cmp}>0) \mathbf{x}=\mathbf{x} \cdot$ right;
return null;
\}

Key and Value are generic types: Key is Comparable

BST implementation (skeleton)

public void put(Key key, Value val)
// see next slides
public Val get(Key key) // see next slides

BST implementation (insert)

BST: Construction

Insert the following keys into BST. A S ERCHINGXMPL

${ }^{(A)}$
 $\stackrel{B}{8}_{8}^{s}$
 AR

Tree Shape

Tree shape.

- Many BSTs correspond to same input data.
- Cost of search/insert is proportional to depth of node.

BST implementation: iterator?
Approach: mimic recursive inorder traversal

```
public void visit(Node x)
    pub
        if (x == null) return;
        visit(x.left)
        StdOut.println(x.key);
        visit(x.right);
```

 \}
 | visit(E) | | E | |
| :---: | :---: | :---: | :---: |
| visit(A) | | A | E |
| print A | A | E | |
| visit(C) | | c | E |
| print C | C | E | |
| print E | E | | |
| visit(S) | | S | |
| visit(I) | | I | S |
| visit(H) | H | H | I |
| print H | | I | s |
| print I | I | S | |
| visit(R) | | R | S |
| visit(N) | | N | R |
| print N | N | R | S |
| print R | R | s | |
| print S | S | | |

To process a node

- follow left links until empty (pushing onto stack)
- pop and process
- process node at right link

BST implementation: iterator

```
public Iterator<Key> iterator()
return new BSTIterator(); }
private class BSTIterator
                implements Iterator<Key>
{
    private Stack<Node>
                stack = new Stack<Node>();
    private void pushLeft(Node x)
    while (x != null)
            { stack.push(x); x = x.left; }
}
BSTIterator()
    { pushLeft(root); }
    public boolean hasNext()
    { return !stack.isEmpty(); }
    public Key next()
    i
        Node x = stack.pop()
        pushLeft(x.right)
        return x.key;
,
```


	A	E	
A	C	E	
C	E		
E	H	I	S
H	I	S	
I	N	R	S
N	R	S	
R	S		
S			

1-1 correspondence between BSTs and Quicksort partitioning

```
QUICKSORTEXAMPLE
ERATESLPUIMQCXOK
ECAIERLPUTMQRXOS
AC(E)IEK|LPP|UTM|Q|R||||S
A(C)EIEEKIPUTMMQRIOOS
(A)C|EIE|K|LP|UTM|QR|X|O|S
```



```
AA/CEEEIKILPPUTMMQR|XO|S
A/C|EEIIKLPOM@R|S|X|U|
ACCEEIKLMOPPQR|S|XUT
A A||EEE|I| (I)M|OP|Q|R|S|X|U|T
ACCEEIIK|IMO@(P)R|S|XUT
A C/C|E E|IK|LMOPP|Q|R|S|X|U|T
|A|CEEE|IK|IMM|OP|Q@SS||U|
ACEETMKIMOPORSTTUX
A C|EEE|K|IMMO|P|Q|R|S|X(U)T
ACEEIKLMOPQRSTUX
ACEEIKIMOPQRSTUQ
```


BSTs: analysis

Theorem. If keys are inserted in random order, the expected number of comparisons for a search/insert is about $2 \ln N$.
$\nwarrow_{\sim 1.38 \mathrm{gg} \mathrm{N} \text {, variance }=\mathrm{O}(1)}$
Proof: 1-1 correspondence with quicksort partitioning

Theorem. If keys are inserted in random order, height of tree is proportional to $\lg N$, except with exponentially small probability.

$$
\text { mean } \approx 6.22 \lg N \text {, variance }=O(1)
$$

But... Worst-case for search/insert/height is N

$$
\uparrow_{\text {e.g., keys inserted in ascending order }}
$$

Searching challenge 3 (revisited)

Problem: Frequency counts in "Tale of Two Cities"

Assumptions: book has 135,000+ words about 10,000 distinct words

Which searching method to use?

1) unordered array
2) unordered linked list
3) ordered array with binary search
4) need better method, all too slow
5) doesn't matter much, all fast enough
6) BSTs
insertion cost < 10000 * 1.38 * $\lg 10000$ < . 2 million lookup cost < 135000 * 1.38 * $\lg 10000$ < 2.5 million

| implementation | guarantee
 search | | average case
 insent | | search
 ordered
 iteration? | operations
 on keys |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| unordered array | N | N | $\mathrm{N} / 2$ | $\mathrm{~N} / 2$ | no | equals() |
| ordered array | $\lg \mathrm{N}$ | N | $\lg \mathrm{N}$ | $\mathrm{N} / 2$ | yes | compareTo() |
| unordered list | N | N | $\mathrm{N} / 2$ | N | no | equals() |
| ordered list | N | N | $\mathrm{N} / 2$ | $\mathrm{~N} / 2$ | yes | compareTo() |
| BST | N | N | $1.38 \lg \mathrm{~N}$ | $1.38 \lg \mathrm{~N}$ | yes | compareTo() |

Next challenge

Guaranteed efficiency for get () and put() and ordered iteration

Rotation in BSTs

Two fundamental operations to rearrange nodes in a tree.

- maintain symmetric order.
- local transformations (change just 3 pointers).
- basis for advanced BST algorithms

Strategy: use rotations on insert to adjust tree shape to be more balanced

[^0]
Rotation

Fundamental operation to rearrange nodes in a tree.

- easier done than said
- raise some nodes, lowers some others

Root insertion: insert a node and make it the new root.

- Insert as in standard BST.
- Rotate inserted node to the root.
- Easy recursive implementation
Caution: very tricky recursive
code.
Read very carefully!

```
rivate Node putRoot(Node x
```

1
if ($x==$ null) return new Node (key, val)
int cmp = key.compareTo (x.key) ;
if (cmp == 0) x.val = val
else if (cmp < 0)
\{ \mathbf{x}. left $=\operatorname{putRoot}(x$. left, $k e y, \operatorname{val}) ; x=\operatorname{rotR}(x)$; \}
else if (cmp >0)
\{ x.right $=$ putRoot(x.right, key, val); $\mathbf{x}=\operatorname{rotL}(x)$; \}
return \times;

Randomized BSTs (Roura, 1996)

Intuition. If tree is random, height is logarithmic.
Fact. Each node in a random tree is equally likely to be the root.

Idea. Since new node should be the root with probability $1 /(\mathrm{N}+1)$,
make it the root (via root insertion) with probability $1 /(\mathrm{N}+1)$.

```
private Node put(Node x, Key key, Value val)
{
    if (x == null) return new Node(key, val);
    int cmp = key.compareTo (x.key)
    if (cmp == 0) { x.val = val; return x; }
    if (StdRandom.bernoulli(1.0 / (x.N + 1.0)
        return putRoot(h, key, val);
    if (cmp < 0) x.left = put(x.left, key, val)
    else if (cmp > 0) x.right = put(x.right, key, val)
    x.N++;
    return x; need to maintain count of
} nodes in tree rooted at }
```

Constructing a BST with root insertion

Ex. ASERCHINGXMPL
A
a^{-2}

$\mathrm{x}^{(0)}$

$A^{(G)} e^{(\operatorname{AR})}$

Why bother?

- Recently inserted keys are near the top (better for some clients)
- Basis for advanced algorithms.

Constructing a randomized BST

Ex: Insert distinct keys in ascending order.
Surprising fact:
Tree has same shape as if keys were inserted in random order.

Random trees result from any insert order

Note: to maintain associative array abstraction need to check whether key is in table and replace value without rotations if that is the case.

Property. Randomized BSTs have the same distribution as BSTs under random insertion order, no matter in what order keys are inserted.

- Expected height is $\sim 6.22 \lg N$
- Average search cost is $\sim 1.38 \lg \mathrm{~N}$
- Exponentially small chance of bad balance.

Implementation cost. Need to maintain subtree size in each node.

Summary of symbol-table implementations

implementation	guarantee		average case		ordered iteration?	operations on keys
	search	insert	search	insert		
unordered array	N	N	N/2	N/2	no	equals()
ordered array	$\lg N$	N	$\lg N$	N/2	yes	compareto ()
unordered list	N	N	N/2	N	no	equals()
ordered list	N	N	N/2	N/2	yes	compareto ()
BST	N	N	1.38 lg N	$1.38 \lg N$	yes	compareTo ()
randomized BST	$7 \lg N$	$7 \lg N$	$1.38 \lg N$	$1.38 \lg N$	yes	compareTo ()

Randomized BSTs provide the desired guarantee

$$
\begin{gathered}
\uparrow \\
\begin{array}{c}
\text { probabilistic, with } \\
\text { exponentially small } \\
\text { chance of quadratic time }
\end{array}
\end{gathered}
$$

Bonus (next): Randomized BSTs also support delete (!)

BST delete: lazy approach

To remove a node with a given key

- set its value to null
- leave key in tree to guide searches
[but do not consider it equal to any search key]

Cost. $O\left(\log N^{\prime}\right)$ per insert, search, and delete, where N ' is the number of elements ever inserted in the BST.

Unsatisfactory solution: Can get overloaded with tombstones.

BST delete: first approach

To remove a node from a BST. [Hibbard, 1960s]

- Zero children: just remove it.
- One child: pass the child up.
- Two children: find the next largest node using right-left* swap with next largest
remove as above.

zero children

two children

Unsatisfactory solution. Not symmetric, code is clumsy.
Surprising consequence. Trees not random (!) $\Rightarrow \operatorname{sqrt}(\mathrm{N})$ per op.
Longstanding open problem: simple and efficient delete for BSTs

Deletion in randomized BSTs

To delete a node containing a given key

- remove the node
- join its two subtrees

Ex. Delete S in

N
private Node remove (Node \mathbf{x}, Key key if ($x=$ null)
return new Node (key, val) ; int cmp = key.compareTo (x. key);
if ($\mathrm{cmp}=0$)
return join(x.left, x.right); else if (cmp $<0)$
x.left $=$ remove (x. left, key); $; ~$ $\underset{\text { else }}{\text { elight }}=\operatorname{remove}(x$. right, key) ; return \mathbf{x};
,

Deletion in randomized BSTs

To delete a node containing a given key

- remove the node
- join the two remaining subtrees to make a tree

Ex. Delete S in

Join in randomized BSTs

To join two subtrees with all keys in one less than all keys in the other

- maintain counts of nodes in subtrees (L and R)
- with probability $L /(L+R)$
make the root of the left the root
make its left subtree the left subtree of the root
join its right subtree to R to make the right subtree of the root
- with probability $L /(L+R)$ do the symmetric moves on the right

Join in randomized BSTs

To join two subtrees with all keys in one less than all keys in the other

- maintain counts of nodes in subtrees (L and R)
- with probability $L /(L+R)$
make the root of the left the root
make its left subtree the left subtree of the root
join its right subtree to R to make the right subtree of the root
- with probability $L /(L+R)$ do the symmetric moves on the right

```
private Node join(Node a, Node b)
    if (a == null) return a
    if (b == null) return b;
    int cmp = key.compareTo (x.key); 
    f a.right = join(a.right,b); return a;
    else
    ( b.left = join(a, b.left ); return b;
}
```


Deletion in randomized BSTs

To delete a node containing a given key

- remove the node
- join its two subtrees

Ex. Delete S in

N

Theorem. Tree still random after delete (!)
Bottom line. Logarithmic guarantee for search/insert/delete

Summary of symbol-table implementations

implementation	guarantee			average case			ordered iteration?
	search	insert	delete	search	insert	delete	
unordered array	N	N	N	N/2	N/2	N/2	no
ordered array	$\lg N$	N	N	$\lg N$	N/2	N/2	yes
unordered list	N	N	N	N/2	N	N/2	no
ordered list	N	N	N	N/2	N/2	N/2	yes
BST	N	N	N	$1.38 \lg N$	$1.38 \mathrm{lg} N$?	yes
randomized BST	$7 \lg N$	$7 \lg N$	$7 \lg N$	$1.38 \lg N$	$1.38 \lg N$	$1.38 \lg N$	yes

Randomized BSTs provide the desired guarantees

$$
\begin{aligned}
& \uparrow \\
& \text { probabilistic, with } \\
& \text { exponentially smal } \\
& \text { chance of error }
\end{aligned}
$$

Next lecture: Can we do better?

[^0]: Key point: no change in search code (!)

