Advanced Topics in Sorting

```
 complexity
 system sorts
duplicate keys
> comparators
```


Complexity of sorting

Computational complexity. Framework to study efficiency of algorithms for solving a particular problem X

Machine model. Focus on fundamental operations.

Upper bound. Cost guarantee provided by some algorithm for X . Lower bound. Proven limit on cost guarantee of any algorithm for X. Optimal algorithm. Algorithm with best cost guarantee for X .

$$
\text { lower bound } \sim \text { upper bound }
$$

Example: sorting.

- Machine model = \# comparisons \longleftarrow access information only through compares
- Upper bound $=\mathrm{N} \lg \mathrm{N}$ from mergesort.
- Lower bound?

> complexity

duplicate keys
> comparators

Decision Tree

Comparison-based lower bound for sorting

Theorem. Any comparison based sorting algorithm must use more than $N \lg N-1.44 \mathrm{~N}$ comparisons in the worst-case.

Pf.

- Assume input consists of N distinct values a_{1} through a_{N}.
- Worst case dictated by tree height h.
- N! different orderings.
- (At least) one leaf corresponds to each ordering.
- Binary tree with N ! leaves cannot have height less than $\lg (N!)$

$$
\begin{aligned}
h & \geq \lg N! \\
& \geq \lg (N / e)^{N} \quad \text { Stirling's formula } \\
& =N \lg N-N \lg e \\
& \geq N \lg N-1.44 N
\end{aligned}
$$

Complexity of sorting

Upper bound. Cost guarantee provided by some algorithm for X
Lower bound. Proven limit on cost guarantee of any algorithm for X.
Optimal algorithm. Algorithm with best cost guarantee for X.

Example: sorting.

- Machine model = \# comparisons
- Upper bound $=N \lg N$ (mergesort)
- Lower bound $=\mathrm{N} \lg \mathrm{N}-1.44 \mathrm{~N}$

Mergesort is optimal (to within a small additive factor)

$$
\text { lower bound } \uparrow \text { upper bound }
$$

First goal of algorithm design: optimal algorithms

Complexity of sorting in context (continued)

Lower bound may not hold if the algorithm has information about

- the key values
- their initial arrangement

Partially ordered arrays. Depending on the initial order of the input we may not need $N \lg N$ compares.

$$
\text { insertion sort requires } O(N) \text { compares on }
$$

an already sorted array

Duplicate keys. Depending on the input distribution of duplicates, we may not need $N \lg N$ compares.
stay tuned for 3-way quicksort

Digital properties of keys. We can use digit/character comparisons instead of key comparisons for numbers and strings.

[^0]
Another complexity example: Selection

Find the $\mathrm{k}^{\text {th }}$ largest element

- Min: k=1.
- Max: $\mathrm{k}=\mathrm{N}$.
- Median: k=N/2

Applications.

- Order statistics.
- Find the "top k"

Use theory as a guide

- easy $O(N \log N)$ upper bound: sort, return $a[k]$
- easy $O(N)$ upper bound for some k: min, max
- easy $\Omega(N)$ lower bound: must examine every element

Which is true?

- $\Omega(N \log N)$ lower bound? [is selection as hard as sorting?]
- $O(N)$ upper bound? [linear algorithm for all k]

Quick-select analysis

Theorem. Quick-select takes linear time on average.
Pf.

- Intuitively, each partitioning step roughly splits array in half.
- $\mathrm{N}+\mathrm{N} / 2+\mathrm{N} / 4+\ldots+1 \approx 2 \mathrm{~N}$ comparisons.
- Formal analysis similar to quicksort analysis:

$$
C_{N}=2 N+k \ln (N / k)+(N-k) \ln (N /(N-k))
$$

Ex: $(2+2 \ln 2) N$ comparisons to find the median
Note. Might use $\sim \mathrm{N}^{2} / 2$ comparisons, but as with quicksort, the random shuffle provides a probabilistic guarantee.

Theorem. [Blum, Floyd, Pratt, Rivest, Tarjan, 1973] There exists a selection algorithm that take linear time in the worst case.
Note. Algorithm is far too complicated to be useful in practice.

Use theory as a guide

- still worthwhile to seek practical linear-time (worst-case) algorithm
- until one is discovered, use quick-select if you don't need a full sort

Selection: quick-select algorithm

Partition array so that:

- element a [m] is in place
- no larger element to the left of m
- no smaller element to the right of m

Repeat in one subarray, depending on m.

if k is here set r to $m-1$ \downarrow	if k is here set l to m+1 \downarrow

Finished when $m=k \quad \leftarrow[k]$ is in place, no larger element to the left, no smaller element to the right

```
public static void select(Comparable
    StdRandom shuffle(a)
    int l=0;
    int r = a.length - 1;
    while ( }x>1\mathrm{ )
        int i = partition(a, l, r);
        if (m>k) r=m-1;
        else if (m<k) l=m + 1;
        else return;
    }
}
```

[] a, int

Sorting Challenge 1

Problem: sort a file of huge records with tiny keys.
Ex: reorganizing your MP3 files.

Which sorting method to use?

1. mergesort
2. insertion sort
3. selection sort

Sorting Challenge 2

Problem: sort a huge randomly-ordered file of small records. Ex: process transaction records for a phone company.

Which sorting method to use?

1. quicksort
2. insertion sort
3. selection sort

Sorting Challenge 1

Problem: sort a file of huge records with tiny keys.

Ex: reorganizing your MP3 files.

Which sorting method to use?

1. mergesort probably no, selection sort simpler and faster
2. insertion sort no, too many exchanges
3. selection sort YES, linear time under reasonable assumptions

Ex: 5,000 records, each 2 million bytes with 100-byte keys

- Cost of comparisons: $100 \times 5000^{2} / 2=1.25$ billion
- Cost of exchanges: $2,000,000 \times 5,000=10$ trillion
- Mergesort might be a factor of log (5000) slower.

Sorting Challenge 2

Problem: sort a huge randomly-ordered file of small records.
Ex: process transaction records for a phone company.

Which sorting method to use?

1. quicksort YES, it's designed for this problem
2. insertion sort no, quadratic time for randomly-ordered files
3. selection sort no, always takes quadratic time

Sorting Challenge 3

Problem: sort a huge number of tiny files (each file is independent) Ex: daily customer transaction records.

Which sorting method to use?

1. quicksort
2. insertion sort
3. selection sort

Sorting Challenge 4

Problem: sort a huge file that is already almost in order.
Ex: re-sort a huge database after a few changes.

Which sorting method to use?

1. quicksort
2. insertion sort
3. selection sort

Sorting Challenge 3

Problem: sort a huge number of tiny files (each file is independent)

Ex: daily customer transaction records.
Which sorting method to use?

1. quicksort no, too much overhead
2. insertion sort YES, much less overhead than system sort
3. selection sort YES, much less overhead than system sort

Ex: 4 record file.

- $4 \mathrm{~N} \log \mathrm{~N}+35=70$
- $2 N^{2}=32$

Sorting Challenge 4

Problem: sort a huge file that is already almost in order.
Ex: re-sort a huge database after a few changes.

Which sorting method to use?

1. quicksort probably no, insertion simpler and faster
2. insertion sort YES, linear time for most definitions of "in order"
3. selection sort no, always takes quadratic time

Ex:

- ZABCDEFGHJKLMNOPQRSTUVWXY

Sorting Applications

Sorting algorithms are essential in a broad variety of applications

- Sort a list of names.

Organize an MP3 library
obvious applications

- Display Google PageRank results.
- List RSS news items in reverse chronological order.
- Find the median.
- Find the closest pair.
- Binary search in a database
problems become easy once items are in sorted order
- Identify statistical outliers
- Find duplicates in a mailing list
- Data compression.
- Computer graphics.
- Computational biology.
- Supply chain management
- Load balancing on a parallel computer.

Every system needs (and has) a system sort!

System sort: Which algorithm to use?

Many sorting algorithms to choose from
internal sorts.

- Insertion sort, selection sort, bubblesort, shaker sort.
- Quicksort, mergesort, heapsort, samplesort, shellsort.
- Solitaire sort, red-black sort, splaysort, Dobosiewicz sort, psort, ..
external sorts. Poly-phase mergesort, cascade-merge, oscillating sort
radix sorts.
- Distribution, MSD, LSD.
- 3-way radix quicksort.
parallel sorts.
- Bitonic sort, Batcher even-odd sort.
- Smooth sort, cube sort, column sort.
- GPUsort.

System sort: Which algorithm to use?

Applications have diverse attributes

- Stable?
- Multiple keys?
- Deterministic?
- Keys all distinct?
- Multiple key types?
- Linked list or arrays?
- Large or small records?
- Is your file randomly ordered?
- Need guaranteed performance?

many more combinations of attributes than algorithms

Elementary sort may be method of choice for some combination. Cannot cover all combinations of attributes.
Q. Is the system sort good enough?
A. Maybe (no matter which algorithm it uses)

Duplicate keys

Often, purpose of sort is to bring records with duplicate keys together.

- Sort population by age.
- Finding collinear points.
- Remove duplicates from mailing list.
- Sort job applicants by college attended.

Typical characteristics of such applications.

- Huge file.
- Small number of key values.

Mergesort with duplicate keys: always $\sim N \lg N$ compares

Quicksort with duplicate keys

- algorithm goes quadratic unless partitioning stops on equal keys!
- [many textbook and system implementations have this problem]
- 1990s Unix user found this problem in qsort()

3-Way Partitioning

3-way partitioning. Partition elements into 3 parts:

- Elements between i and j equal to partition element v.
- No larger elements to left of i.
- No smaller elements to right of j

Dutch national flag problem.

- not done in practical sorts before mid-1990s.
- new approach discovered when fixing mistake in Unix qsort()
- now incorporated into Java system sort

Duplicate keys: the problem

Assume all keys are equal
Recursive code guarantees that case will predominate!

Mistake: Put all keys equal to the partitioning element on one side

- easy to code
- guarantees N^{2} running time when all keys equal
B A A B A B C C B C B
A A A A A A A A A A A

Recommended: Stop scans on keys equal to the partitioning element

- easy to code
- guarantees $N \lg N$ compares when all keys equal
B A A B A B C C B C B
A A A A A A A A A A A

Desirable: Put all keys equal to the partitioning element in place
A A A B B B B BCCC A A A A A A A A A A A

Common wisdom to 1990s: not worth adding code to inner loop

Solution to Dutch national flag problem.

3-way partitioning (Bentley-McIlroy).

- Partition elements into 4 parts: no larger elements to left of i no smaller elements to right of j equal elements to left of p equal elements to right of q
- Afterwards, swap equal keys into center.

All the right properties.

- in-place
- not much code.
- linear if keys are all equal.
- small overhead if no equal keys.

3-way Quicksort: Java Implementation

```
private static void sort(Comparable[] a, int l, int r)
{
    if (r <= l) return
    nt i = l-1, j = r;
    int p = 1-1, q = r
    while(true) 4-way partitioning
        while (less(a[++i], a[r]))
        while (less(a[r], a[--j])) if (j == l) break
        if (i >= j) break
        exch(a, i, j);
        if (eq(a[i], a[r])) exch(a, ++p, i); swap equal keys to left or right
        if (eq(a[j], a[r])) exch(a, --q, j);
    exch(a, i, r);
    j = i - 1;
    i=i+i
    for (int k = l ; k <= p; k++) exch(a, k, j--);
    for (int k = r-1; k >= q; k--) exch(a, k, i++)
    sort(a, l, j);
    sort(a, i, r);
    recursively sort left and right
}
```

Duplicate keys: lower bound

Theorem. [Sedgewick-Bentley] Quicksort with 3-way partitioning is optimal for random keys with duplicates.

Proof (beyond scope of 226).

- generalize decision tree
- tie cost to entropy
- note: cost is linear when number of key values is $O(1)$

Bottom line: Randomized Quicksort with 3-way partitioning reduces cost from linearithmic to linear (!) in broad class of applications

3-way partitioning animation

> complexity > system sorts dupltcate keys

> comparators

Generalized compare

Comparable interface: sort uses type's compareTo () function:

```
public class Date implements Comparable<Date>
    private int month, day, year;
    public Date(int m, int d, int y)
    month = m;
        month = m;
        day = d
    }
    public int compareTo(Date b)
    { Date a = this
        if (a.year < b.year ) return -1;
        if (a.year < b.year) return -1;
        if (a.year > b.year) return +1;
        if (a.month < b.month) return -1;
        if (a.month > b.month) return +1;
        if (a.day < b.day ) return -1;
        if (a.day > b.day ) return +1;
    return 0;
    }
```

\}

Generalized compare

Comparable interface: sort uses type's compareTo () function:
Problem 1: Not type-safe
Problem 2: May want to use a different order
Problem 3: Some types may have no "natural" order.

Exception java.lang.ClassCastException: java.lang. Double
at java.lang.Integer.compareTo (Integer. java:35)

Generalized compare

Comparable interface: sort uses type's compareTo() function:

Problem 1: Not type-safe
Problem 2: May want to use a different order.
Problem 3: Some types may have no "natural" order

Ex. Sort strings by:

- Natural order.

Now is the time

- Case insensitive. is Now the time
- French. real réal rico
- Spanish. café cuidado champiñón dulce
ch and rr are single letters

String[] a;

Arrays.sort(a)
Arrays.sort (a, String.CASE_INSENSITIVE_ORDER) ;
Arrays.sort(a, Collator. get Instance (Locale. FRENCH)) ;
Arrays.sort (a, Collator getInstance (Locale.SPANISH))
import java.text.Collator;

Generalized compare

Comparable interface: sort uses type's compareTo () function:

```
Problem 1: Not type-safe
Problem 2: May want to use a different order
Problem 3: Some types may have no "natural" order
Fix: generics public class Insertion
```

```
{ pulia static <Ker
```

{ pulia static <Ker
public static <Key extends Comparable<Key>>
public static <Key extends Comparable<Key>>
public static <Key extends Compa
public static <Key extends Compa
int N = a.length
int N = a.length
for (int i = 0; i < N; i++)
for (int i = 0; i < N; i++)
for (int j = i; j > 0; j--)
for (int j = i; j > 0; j--)
if (less(a[j], a[j-1])) exch(a, j, j-1);
if (less(a[j], a[j-1])) exch(a, j, j-1);
else
else
break;
break;
}
}
}

```
}
```

Client can sort array of any Comparable type: Double [], File [], Date []
Necessary in system library code; not in this course (for brevity)

Generalized compare
Comparable interface: sort uses type's compareTo () function:
Problem 1: Not type-safe
Problem 2: May want to use a different order.
Problem 3: Some types may have no "natural" order.
Solution: Use Comparator interface
Comparator interface. Require a method compare() so that compare (\mathbf{v}, w) is a total order that behaves like compareTo ().

Advantage. Separates the definition of the data type from definition of what it means to compare two objects of that type.

- add any number of new orders to a data type.
- add an order to a library data type with no natural order.

Generalized compare

Easy modification to support comparators in our sort implementations

- pass comparator to sort (), less ()
- use it in less ()

Example: (insertion sort)

```
public static void sort(Object[] a, Comparator comparator)
{
    int N = a.length
    for (int i = 0; i < N; i++)
        for (int j = i; j > 0; j--)
            if (less(comparator, a[j], a[j-1]))
            exch(a, j, j-1);
            else break;
}
private static boolean less(Comparator c, Object v, Object w)
{ return c.compare(v,w) < 0; }
private static void exch(Object[] a, int i, int j)
    { Object t = a[i]; a[i] = a[j]; a[j] = t; }
```


Generalized compare

Comparable interface: sort uses type's compareTo() function:

Problem 2: May want to use a different order
Problem 3: Some types may have no "natural" order

Solution: Use Comparator interface

Example:

```
public class ReverseOrder implements Comparator<String>
{
    public int compare(String a, String b)
    { return - a.compareTo(b); }
}
```

```
Arrays.sort(a, new ReverseOrder());
```


Generalized compare

Comparators enable multiple sorts of single file (different keys)
Example. Enable sorting students by name or by section.

```
Arrays.sort(students, Student.BY NAME)
Arrays.sort(students, Student.BY_SECT);
```


Andrews	3	A	$664-480-0023$	097 Little
Battle	4	C	$874-088-1212$	121 Whitman
Chen	2	A	$991-878-4944$	308 Blair
Fox	1	A	$884-232-5341$	11 Dickinson
Furia	3	A	$766-093-9873$	101 Brown
Gazsi	4	B	$665-303-0266$	22 Brown
Kanaga	3	B	$898-122-9643$	22 Brown
Rohde	3	A	$232-343-5555$	343 Forbes

\downarrow				
Fox	1	A	$884-232-5341$	11 Dickinson
Chen	2	A	$991-878-4944$	308 Blair
Andrews	3	A	$664-480-0023$	097 Litlle
Furia	3	A	$766-093-9873$	101 Brown
Kanaga	3	B	$898-122-9643$	22 Brown
Rohde	3	A	232 -343-5555	343 Forbes
Battle	4	C	$874-088$-1212	121 Whitman
Gazsi	4	B	$665-303$-0266	22 Brown

Generalized compare

Comparators enable multiple sorts of single file (different keys)

Example. Enable sorting students by name or by section

```
public class Studen
{ public static final Comparator<Student> BY NAME = new ByName();
    public static final Comparator<Student> BY_SECT = new BySect();
    private String name;
    private int section;
    private static class ByName implements Comparator<Student>
    if
        public int compare(Student a, Student b)
        { return a.name.compareTo(b.name); }
    }
    private static class BySect implements Comparator<Student>
    public int compare(Student a, Student b)
        { return a.section - b.section; }
    }
}
```


Stability

Q. Which sorts are stable?

- Selection sort?
- Insertion sort?
- Shellsort?
- Quicksort?
- Mergesort?
A. Careful look at code required

Annoying fact. Many useful sorting algorithms are unstable.

Easy solutions.

- add an integer rank to the key
- careful implementation of mergesort

Open: Stable, inplace, optimal, practical sort??

Generalized compare problem

A typical application

- first, sort by name
- then, sort by section

@\#\%\&@!! Students in section 3 no longer in order by name.

A stable sort preserves the relative order of records with equal keys.
Is the system sort stable?

Java system sorts

Use theory as a guide: Java uses both mergesort and quicksort.

- Can sort array of type Comparable or any primitive type.
- Uses quicksort for primitive types.
- Uses mergesort for objects.

```
import java.util.Arrays;
public class IntegerSort
    public static void main(String[] args)
        int N = Integer.parseInt(args[0])
            int[] a = new int[N];
        for (int i = 0; i<N;i++)
            ali] = stain.
            for (int i=0;
                System.out.println(a[i])
}
```

Q. Why use two different sorts?
A. Use of primitive types indicates time and space are critical
A. Use of objects indicates time and space not so critical

Arrays.sort() for primitive types
Achilles heel in Bentley-McIlroy implementation (Java system sort)

Bentley-McIlroy. [Engineeering a Sort Function]

- Original motivation: improve qsort() function in C.
- Basic algorithm = 3-way quicksort with cutoff to insertion sort.
- Partition on Tukey's ninther: median-of-3 elements, each of which is a median-of-3 elements.
approximate median-of-9
nine evenly spaced elements

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline R & & A & M & & G & x & & к & B & Ј & E \\
\hline R & A & M & G & x & K & B & Ј & E & \multicolumn{3}{|l|}{groups of 3} \\
\hline M & K & E & \multicolumn{9}{|l|}{medians} \\
\hline к & \multicolumn{11}{|l|}{ninther} \\
\hline
\end{tabular}
```

Why use ninther?

- better partitioning than sampling
- quick and easy to implement with macros
- less costly than random \longleftarrow Good idea? Stay tuned.

Achilles heel in Bentley-McIlroy implementation (Java system sort)
 A killer input

- blows function call stack in Java and crashes program
- would take quadratic time if it didn't crash first

```
more 250000.txt
0
218750
222662
11
247070
83339
156253
```

250,000 integers between
0 and 250,000
you give it as much stack space as Windows allows.

Attack is not effective if file is randomly ordered before sort

Based on all this research, Java's system sort is solid, right?

McIlroy's devious idea. [A Killer Adversary for Quicksort

- Construct malicious input while running system quicksort in response to elements compared.
- If p is pivot, commit to $(\mathrm{x}<\mathrm{p})$ and ($\mathrm{y}<\mathrm{p})$, but don't commit to ($\mathrm{x}<\mathrm{y}$) or ($\mathrm{x}>\mathrm{y}$) until x and y are compared.

Consequences.

- Confirms theoretical possibility.
- Algorithmic complexity attack: you enter linear amount of data; server performs quadratic amount of work.

System sort: Which algorithm to use?

Applications have diverse attributes

- Stable?
- Multiple keys?
- Deterministic?
- Keys all distinct?
- Multiple key types?
- Linked list or arrays?
- Large or small records?
- Is your file randomly ordered?
- Need guaranteed performance?

Elementary sort may be method of choice for some combination.
Cannot cover all combinations of attributes.
Q. Is the system sort good enough?
A. Maybe (no matter which algorithm it uses).

$$
\begin{aligned}
& \text { many more combinations of } \\
& \text { attributes than algorithms }
\end{aligned}
$$

[^0]: $\Sigma_{\text {stay tuned for radix sorts }}$

