Sorting Algorithms

rules of the game
- shellsort
- mergesort
- quicksort
- animations
Reference:
Algorithms in Java, Chapters 6-8

Classic sorting algorithms

Critical components in the world's computational infrastructure.

- Full scientific understanding of their properties has enabled us to develop them into practical system sorts.
- Quicksort honored as one of top 10 algorithms of $20^{\text {th }}$ century in science and engineering.

Shellsort.

- Warmup: easy way to break the N^{2} barrier.
- Embedded systems.

Mergesort.

- Java sort for objects.
- Perl, Python stable sort.

Quicksort.

- Java sort for primitive types.
- C qsort, Unix, g++, Visual C++, Python.

Basic terms

Ex: student record in a University.

Sort: rearrange sequence of objects into ascending order.

Aaron	4	\wedge	664-480-0023	097 Little
Andrews	3	λ	874-088-1212	121 Whitman
Battie	4	c	991-878-4944	308 Blatr
chen	2	\wedge	884-232-5341	11 Dickinson
fox	1	λ	243-456-9091	101 Brown
purta	3	λ	766-093-9873	22 Brown
gazal	4	B	665-303-0266	113 walker
Kanaga	3	B	898-122-9643	343 Forbes
Rohde	3	A	232-343-5555	115 Holder
Qu111c1	1	c	343-987-5642	32 mccosh

Sample sort client

Goal: Sort any type of data
Example. List the files in the current directory, sorted by file name.

```
import java.io.File;
public class Files
```

$\{$
public static void main(String[] args)
1
File directory $=$ new File (args[0]);
File[] files = directory.listFiles();
Insertion.sort(files)
for (int $i=0 ; i<f i l e s . l e n g t h ; i++)$
System.out. println(files[i]) ;
\}
\}

Next: How does sort compare file names?
\% java Files
\% java Files. Insertion.java InsertionX.class InsertionX. java Selection.clas election.ja Shell. Clava Shellx.class Shellx.java index.html

Callbacks

Goal. Write robust sorting library method that can sort any type of data using the data type's natural order.

Callbacks.

- Client passes array of objects to sorting routine
- Sorting routine calls back object's comparison function as needed.

Implementing callbacks.

- Java: interfaces.
- C: function pointers.
- C++: functors

Callbacks

Goal. Write robust sorting library that can sort any type of data into sorted order using the data type's natural order.

Callbacks.

- Client passes array of objects to sorting routine
- Sorting routine calls back object's comparison function as needed.

Implementing callbacks

- Java: interfaces.
- C: function pointers
- C++: functors.

Plus: Code reuse for all types of data
Minus: Significant overhead in inner loop

This course:

- enables focus on algorithm implementation
- use same code for experiments, real-world data

Interface specification for sorting

Comparable interface

Must implement method compareTo() so that v.compareTo(w) returns:

- a negative integer if v is less than w
- a positive integer if v is greater than w
- zero if v is equal to w

Consistency.
Implementation must ensure a total order.

- if $(a<b)$ and $(b<c)$, then $(a<c)$.
- either $(a<b)$ or $(b<a)$ or $(a=b)$

Built-in comparable types. String, Double, Integer, Date, File. User-defined comparable types. Implement the comparable interface.

Implementing the Comparable interface: example 2

Domain names

- Subdomain: bolle.cs.princeton.edu.

- Reverse subdomain: edu.princeton.cs.bolle
- Sort by reverse subdomain to group by category.

```
public class Domain implements Comparable<Domain>
```

 private String[] fields;
 private int N ;
 public Domain(String name)
 fields = name.split("\\.");
 \(\mathrm{N}=\) fields.length;
 f
 public int compareTo (Domain b)
 I Domain a = this.

1
int $c=a . f i e l d s[i]$. compareTo (b.fields[i])
if $(c<0)$ return -1
else if $(c>0)$ return +1 ;
\}
return a.n - b.N
\}
\}
nsorted
ee.princeton.edu
cs.princeton.ed princeton.edu cnn. com
google. google. com
www.cs.princeton.edu lle.cs.princeton.ed

orted

com. apple
com. apple
com. cnn
com.
com. google
edu.princeto
edu.princeton.cs
edu.princeton.cs.bolle edu.princeton.cs.ww edu.princeton.ee

Implementing the Comparable interface: example 1

Date data type (simplified version of built-in Java code)

```
public class Date implements Comparable<Date>
    private int month, day, year;
    public Date(int m, int d, int y)
        {
    month = m;
    month = m;
    }
    public int compareTo(Date b)
        Date a = this;
            if (a.year < b.year) return -1;
            if (a.year > b.year) return +1;
            if (a.year > b.year ) return +1;
            if (a.month < b.month) return -1;
            if (a.month > b.month) return +1;
            if (a.day < b.day ) return -1;
            return 0;
    }
}
```

only compare dates to other dates

```
        year = y;
```


Sample sort clients

```
File names
import java.io.File;
    public class Files
    i
        public static void main(String[] args)
            File directory = new File(args[0]);
            File[] files = directory.listFiles()
            Insertion.sort(files);
            for (int i = 0; i < files.length; i++)
            System.out.println(files[i]);
```



```
}
```


Random numbers

public class Experiment
f pub:
public static void main(String[] args)

$$
\begin{aligned}
& \text { int } \mathrm{N}=\text { Integer.parseInt (args [0]); } \\
& \text { Double[] a }=\text { new Double }[\mathrm{N}] ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { int } N=\text { Integer.parseInt (arg } \\
& \text { Double[1a= new Double }[N] ; \\
& \text { for (int } i=0 ; i<N ; i++)
\end{aligned}
$$

$$
\begin{aligned}
& a[i]=\text { Math. rand } \\
& \text { Selection.sort (a) ; } \\
& \text { for (int } i=0 ; i \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for (int } i=0 ; i<N ; i++) \\
& \quad \text { System.out. println(a[i]) ; }
\end{aligned}
$$

, ${ }^{3}$
$\%$ java Experiment 10
0.08614716385210452 0.09054270895414829 0.10708746304898642
0.21166190071646818 0.363292849257276 0.460954145685913 . 560954145685913 0.5340026311350087
0.7216129793703496 0.9003500354411443 o. 9003590939908845686

Several Java library data types implement Comparable
You can implement Comparable for your own types

Two useful abstractions

Helper functions. Refer to data only through two operations.

- less. Is v less than w ?

```
private static boolean less(Comparable v, Comparable w)
    return (v.compareTo(w) < 0);
}
```

- exchange. Swap object in array at index i with the one at index j.
private static void exch (Comparable[] a, int i, int j)

```
    Comparable t = a[i]
    a[i] =a[j];
    a[i] = a[j];
```

\}

```
Why use less () and exch () ?
    Switch to faster implementation for primitive types
private static boolean less(double v, double w)
return v < w;
}
```

Instrument for experimentation and animation

```
gfivate static boolean less(double v, doubl
{ cnt++;
    return v < w
```

Translate to other languages

```
for (int i = 1; i < a.length; i++)
JavaScript, Ruby
    if (less(a[i], a[i-1]))
        return false;
    return true;}
```

Sample sort implementations

```
selection sort public class Selection
            public static void sort(Comparable[] a)
            int N = a.length
            for (int i = 0; i < N; i++)
            { int min = i,
                int min =i; in (int j= i+1; j < N; j++)
                exch(a, i, min);
        }
    }
    }
insertion sort public class Insertion
        public static void sort(Comparable[] a)
            int N = a.length;
            for (int i=1; i < N; i++)
            if (less(a[j] > 0; j--)
                exch(a, j, j-1);
            else break;
    }
}
```


Properties of elementary sorts (review)

Bottom line: both are quadratic (too slow) for large randomly ordered files

Shellsort

Idea: move elements more than one position at a time by h-sorting the file for a decreasing sequence of values of h

Visual representation of insertion sort

Reason it is slow: data movement

Shellsort

Idea: move elements more than one position at a time
by h-sorting the file for a decreasing sequence of values of h

Use insertion sort, modified to h-sort

Visual representation of shellsort

Bottom line: substantially faster!

Why are we interested in shellsort?

Example of simple idea leading to substantial performance gains

Useful in practice

- fast unless file size is huge
- tiny, fixed footprint for code (used in embedded systems)
- hardware sort prototype

Simple algorithm, nontrivial performance, interesting questions

- asymptotic growth rate?
- best sequence of increments?
- average case performance?

Your first open problem in algorithmics (see Section 6.8):
Find a better increment sequence
mail rs@cs.princeton.edu
rules of the game
ynimations

Mergesort: Java implementation of recursive sort

```
public class Merge
{
    private static void sort(Comparable[] a
                Comparable[] aux, int lo, int hi)
        if (hi <= lo + 1) return;
        int m = lo + (hi - lo) / 2
        sort(a, aux, lo,m);
        sort(a, aux, m, hi)
        merge (a, aux, lo, m, hi);
    }
    public static void sort(Comparable[] a)
        Comparable[] aux = new Comparable[a.length];
        sort(a, aux, 0, a.length);
    }
}
```


Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? Use an auxiliary array.


```
            for (int k = 1; k < r; k++)
                if (i>>=m)
merge }\longrightarrow\quad\mathrm{ else if ( }j>=r\mathrm{ )
        else if (less(aux[j], aux[i])) a[k] = aux[j++];
        else a[k] = aux[i++];
    }
```


Mergesort analysis: Memory

Q. How much memory does mergesort require?
A. Too much!

- Original input array $=\mathrm{N}$.
- Auxiliary array for merging $=\mathrm{N}$.
- Local variables: constant.
- Function call stack: $\log _{2} \mathrm{~N}$ [stay tuned]
- Total $=2 \mathrm{~N}+\mathrm{O}(\log \mathrm{N})$.
cannot "fill the memory and sort"
Q. How much memory do other sorting algorithms require?
- $N+O(1)$ for insertion sort and selection sort.
- In-place $=\mathrm{N}+\mathrm{O}(\log \mathrm{N})$.

Challenge for the bored. In-place merge. [Kronrud, 1969]

Mergesort analysis

Def. $T(N) \equiv$ number of array stores to mergesort an input of size N

- not quite right for odd N
- same recurrence holds for many algorithms
- same for any input of size N
- comparison count slightly smaller because of array ends

Solution of Mergesort recurrence $T(N) \sim N \lg N$

- true for all N
- easy to prove when N is a power of 2

Mergesort recurrence: Proof 1 (by recursion tree)
for $N>1$, with $T(1)=0$
(assume that N is a power of 2)

Mergesort recurrence: Proof 3 (by induction)

$$
\begin{aligned}
T(N)=2 T(N / 2)+ & N \\
& \text { for } N>1 \text {, with } T(1)=0
\end{aligned}
$$

(assume that N is a power of 2

Claim. If $T(N)$ satisfies this recurrence, then $T(N)=N \lg N$.
Pf. [by induction on N]

- Base case: $\mathrm{N}=1$.
- Inductive hypothesis: $T(N)=N \lg N$
- Goal: show that $T(2 N)+2 N \lg (2 N)$.

$T(2 N)$	$=2 T(N)+2 N$		given
	$=2 N \lg N+2 N$		inductive hypothesis
	$=2 N(\lg (2 N)-1)+2 N$		algebra
	$=2 N \lg (2 N)$		QED

Ex. (for $\operatorname{COS} 340$). Extend to show that $T(N) \sim N \lg N$ for general N

Bottom-up mergesort

Basic plan:

- Pass through file, merging to double size of sorted subarrays.
- Do so for subarray sizes $1,2,4,8, \ldots, N / 2, N$. \longleftarrow proof 4 that mergesort uses N IgN compares

No recursion needed!

Mergesort: Practical Improvements

Use sentinel.

- Two statements in inner loop are array-bounds checking
- Reverse one subarray so that largest element is sentinel (Program 8.2)

Use insertion sort on small subarrays.

- Mergesort has too much overhead for tiny subarrays.
- Cutoff to insertion sort for ≈ 7 elements.

Stop if already sorted.

- Is biggest element in first half \leq smallest element in second half?
- Helps for nearly ordered lists.

Eliminate the copy to the auxiliary array. Save time (but not space) by switching the role of the input and auxiliary array in each recursive call.

Bottom-up Mergesort: Java implementation
public class Merge
private static void merge (Comparable[] a, Comparable[] aux,
int 1 , int m, int r)
tricky merge that uses sentinel (see Program 8.2)
for (int $i=1 ; i<m ; i++$) aux[i] =a[i]; for (int $j=m ; j<r ; j++$) aux[j] =a[m+r-j-1]; int $i=1, j=r-1$;
for (int $k=1 ; k<r ; k++)$
if (less (aux[j], aux[i])) a[k] = aux[j--];
$\begin{array}{ll}\text { if (less (aux[j], aux[i])) } & a[k]=\operatorname{aux}[j--] ; \\ \text { else } & a[k]=a u x[i++] ;\end{array}$
\}
public static void sort(Comparable[] a)
int $\mathrm{N}=\mathrm{a}$. length;
Comparable[] aux = new Comparable[N];
for (int $\mathrm{m}=1$; $\mathrm{m}<\mathrm{N}$; $\mathrm{m}=\mathrm{m}+\mathrm{m}$)
for (int $i=0 ; i<N-m ; i+=m+m)$
merge (a, aux, i, i+m, Math.min(i+m+m, N)),

Concise industrial-strength code if you have the space

Sorting Analysis Summary

Running time estimates:

- Home pc executes 10^{8} comparisons/second.
- Supercomputer executes 10^{12} comparisons/second.

Insertion Sort $\left(N^{2}\right)$			Mergesort ($N \log N$)			
computer	thousand	million	billion	thousand	million	billion
home	instant	2.8 hours	317 years	instant	1 sec	18 min
super	instant	1 second	1.6 weeks	instant	instant	instant

Lesson. Good algorithms are better than supercomputers.

Good enough?

See Program 8.4 (or Java system sort)

anmation

Quicksort: Java code for recursive sort

```
public class Quick
{
    public static void sort(Comparable[] a)
        StdRandom.shuffle(a)
        sort(a, 0, a.length - 1)
    }
    private static void sort(Comparable[] a, int 1, int r)
        if ( }x<=1\mathrm{ ) return;
        if (r<= l) return;
        sort(a, 1, m-1);
        Sort(a, 1,m-1);
}
```

Quicksort (Hoare, 1959)

Basic plan.

- Shuffle the array.
- Partition so that, for some i
element a[i] is in place
no larger element to the left of i
no smaller element to the right of i
- Sort each piece recursively.

Quicksort trace

Quicksort partitioning

Basic plan:

- scan from left for an item that belongs on the right
- scan from right for item item that belongs on the left
- exchange
- continue until pointers cross

$$
a[i]
$$

array contents before and after each exchange

Quicksort Implementation details

Partitioning in-place. Using a spare array makes partitioning easier but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit trickier than it might seem.

Staying in bounds. The ($\mathrm{i}=\mathrm{r}$) test is redundant, but the ($\mathrm{j}==1$ est is not

Preserving randomness. Shuffling is key for performance guarantee.
Equal keys. When duplicates are present, it is (counter-intuitively) best to stop on elements equal to partitioning element.

```
{
int i = 1-1;
    int j = r;
    while(true)
    i
        while (less(a[++i],a[r])) find item on left to swap
            if (i == r) break;
        while (less(a[r], a[--j])) find item on right to swap
            if (j == l) break;
        if (i >= j) break;
                            check if pointers cross
        exch(a, i, j)
    }
    exch (a, i, r); swap with partitioning item
    return i; return index of item now known to be in place
}
```


Quicksort: Average-case analysis

Theorem. The average number of comparisons C_{N} to quicksort a random file of N elements is about $2 \mathrm{~N} \ln \mathrm{~N}$.

- The precise recurrence satisfies $C_{0}=C_{1}=0$ and for $N \geq 2$:
- Multiply both sides by N

$$
N C_{N}=N(N+1)+2\left(C_{0} \ldots+C_{k-1}+\ldots+C_{N-1}\right)
$$

- Subtract the same formula for $\mathrm{N}-1$:

$$
N C_{N}-(N-1) C_{N-1}=N(N+1)-(N-1) N+2 C_{N-1}
$$

- Simplify:

$$
N C_{N}=(N+1) C_{N-1}+2 N
$$

Quicksort: Average Case

$$
N C_{N}=(N+1) C_{N-1}+2 N
$$

- Divide both sides by $N(N+1)$ to get a telescoping sum:

$$
\begin{aligned}
C_{N} /(N+1) & =C_{N-1} / N+2 /(N+1) \\
& =c_{N-2} /(N-1)+2 / N+2 /(N+1) \\
& =c_{N-3} /(N-2)+2 /(N-1)+2 / N+2 /(N+1) \\
& =2(1+1 / 2+1 / 3+\ldots+1 / N+1 /(N+1))
\end{aligned}
$$

- Approximate the exact answer by an integral:

$$
\begin{aligned}
C_{N} & \approx 2(N+1)(1+1 / 2+1 / 3+\ldots+1 / N) \\
& =2(N+1) H_{N} \approx 2(N+1) \int_{1}^{N} d x / x
\end{aligned}
$$

- Finally, the desired result:

$$
C_{N} \approx 2(N+1) \ln N \approx 1.39 \mathrm{~N} \lg N
$$

Sorting analysis summary

Running time estimates:

- Home pc executes 10^{8} comparisons/second.
- Supercomputer executes 10^{12} comparisons/second.

Insertion Sort (N^{2})				Mergesort ($\mathrm{N} \log \mathrm{N}$)		
computer	thousand	million	billion	thousand	million	billion
home	instant	2.8 hours	317 years	instant	1 sec	18 min
super	instant	1 second	1.6 weeks	instant	instant	instant
					ksort (N	
				thousand	million	billion
				instant	0.3 sec	$6 \text { min }$
				instant	instant	instant

Lesson 1. Good algorithms are better than supercomputers. Lesson 2. Great algorithms are better than good ones.

Quicksort: Summary of performance characteristics

Worst case. Number of comparisons is quadratic.

- $\mathrm{N}+(\mathrm{N}-1)+(\mathrm{N}-2)+\ldots+1 \approx \mathrm{~N}^{2} / 2$.
- More likely that your computer is struck by lightning.

Average case. Number of comparisons is $\sim 1.39 \mathrm{NIg} \mathrm{N}$.

- 39% more comparisons than mergesort.
- but faster than mergesort in practice because of lower cost of other high-frequency operations.

Random shuffle

- probabilistic guarantee against worst case
- basis for math model that can be validated with experiments

Caveat emptor. Many textbook implementations go quadratic if input:

- Is sorted.
- Is reverse sorted.
- Has many duplicates (even if randomized)! [stay tuned]

Quicksort: Practical improvements

Median of sample.

- Best choice of pivot element = median.
- But how to compute the median?
- Estimate true median by taking median of sample.

Insertion sort small files.

- Even quicksort has too much overhead for tiny files.
- Can delay insertion sort until end.

Optimize parameters.

- Median-of-3 random elements.
- Cutoff to insertion sort for ≈ 10 elements.

Non-recursive version.

- Use explicit stack.
- Always sort smaller half first.

All validated with refined math models and experiments

Bottom-up mergesort animation

Mergesort animation
merge in progress

Quicksort animation

