Princeton University COS 217: Introduction to Programming Systems Fall 2007 Final Exam Preparation

Topics

You are responsible for all material covered in lectures, precepts, assignments, and required readings. This is a non-exhaustive list of topics that were covered. Topics that were covered after the midterm exam are in **boldface**.

1. C programming

The program preparation process

Memory layout: text, stack, heap, rodata, data, bss sections

Data types

Variable declarations and definitions

Variable scope, linkage, and duration/extent

Variables vs. values

Operators

Statements

Function declarations and definitions

Pointers

Call-by-value and call-by-reference

Arrays

Strings

Command-line arguments

Constants: #define, enumerations, the "const" keyword

Input/output functions

Text files

Structures

Dynamic memory management: malloc(), calloc(), realloc(), free()

Void pointers

Function pointers and function callbacks

Macros and their dangers (see King Section 14.3)

The assert() macro

Bitwise operators

Unions

The fwrite() and fread() functions

2. Programming style

Modularity, interfaces, implementations

Design by contract

Multi-file programs using header files

Protecting header files against accidental multiple inclusion

Opaque pointers

Stateless modules

Abstract objects

Abstract data types

Memory "ownership"

Invariants

Testing

Profiling and instrumentation

Performance tuning, Amdahl's Law

Portable programming

3. Representations

The binary, octal, and hexadecimal number systems

Signed vs. unsigned integers

Binary arithmetic

Signed-magnitude, one's complement, and two's complement representation of negative integers

Representation of floating point numbers

4. IA-32 architecture and assembly language

General computer architecture

The Von Neumann archhitecture

Control unit vs. ALU

The memory hierarchy: registers vs. cache vs. memory vs. disk

Instruction pipelining

Little-endian vs. big-endian byte order

CISC vs. RISC

Language levels: high-level vs. assembly vs. machine

Assembly language

Directives (.section, .asciz, .long, etc.)

Mnemonics (movl, addl, call, etc.)

Instruction operands: immediate, register, memory

Memory addressing modes

The stack and local variables

The stack and function calls

The C function call convention

Machine language

Opcodes

The ModR/M byte

Immediate, register, memory, displacement operands

Assemblers

The forward reference problem

Pass 1: Create symbol table

Pass 2: Use symbol table to generate data section, rodata section, bss section, text section, relocation records

Linkers

Resolution: Fetch library code

Relocation: Use relocation records and symbol table to patch code

5. Operating systems

Services provided

Virtual memory

Computer security

Buffer overrun attacks

UNIX processes

The process life-cycle

Context switches

The getpid(), exec(), fork(), and wait() system calls

The system() function

UNIX low-level I/O

The open(), creat(), close(), read(), write(), and dup() system calls Networks, pipes, and sockets

Signals

The kill command

The kill() function

Signal handler functions

The signal() function

6. Applications

De-commenting

Lexical analysis via finite state automata

String manipulation

Symbol tables, linked lists, hash tables

Dynamically expanding arrays

XOR encryption

Dynamic memory management

Shells

7. Tools: The UNIX/GNU programming environment

UNIX, bash, xemacs, gcc, gdb, gdb for assembly language, make, gprof

Readings

As specified by the course "Schedule" Web page. Readings that were assigned after the midterm exam are in **boldface**.

Required:

C Programming (King): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19.1-3, **20**

The Practice of Programming (Kernighan & Pike): 1, 2, 4, 5, 6, 7, 8

Programming from the Ground Up (Bartlett): 1, 2, 3, 4, 9, 10, B, E, F or Computer Systems (Bryant & O'Hallaron): 2, 3

Recommended:

C Programming (King): 19.4

Programming from the Ground Up (Bartlett): 5, 6, 7, 8, 11, 12, 13, C or Computer Systems (Bryant & O'Hallaron): 1, 5, 7

Programming with GNU Software (Loukides & Oram): 1, 2, 3, 4, 6, 7, 9

Communications of the ACM "Detection and Prevention of Stack Buffer Overflow Attacks" paper

The C Programming Language (Kernighan & Ritchie): 8.7

Recommended, for reference only:

Using as, the GNU Assembler

IA32 Intel Architecture Software Developer's Manual: Volume 1: Basic Architecture

IA32 Intel Architecture Software Developer's Manual: Volume 2: Instruction Set Reference

IA32 Intel Architecture Software Developer's Manual: Volume 3: System Programming Guide

Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification

Copyright © 2007 by Robert M. Dondero, Jr.