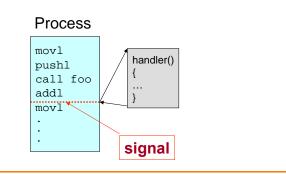


Signals and Writing Portable Programs and Course Wrap-Up


Prof. David August

COS 217

Signals

- Event notification sent to a process at <u>any</u> time
 - An event generates a signal
 - -OS stops the process immediately
 - Signal handler executes and completes
 - The process resumes where it left off

Signals Can Originate From:

3

2

• Keyboard:

- $-Ctrl-C \rightarrow INT$ signal (process terminates)
- -Ctrl-Z → TSTP signal (process susper
- -Ctrl- \rightarrow ABRT signal (process dumps

• Program itself:

- Illegal memory reference → SIGSEGV (segmentation fault)
- The **kill** and **raise** library functions. Example: send a signal to self:
- if (kill(getpid(), SIGABRT))
 exit(0);

Signals Can Originate From:

• Command Line:

kill -<signal> <PID>

-Example: kill -INT 1234

- Send the INT signal to process with PID 1234
- Same as pressing Ctrl-C if process 1234 is running
- If no signal specified, the default is SIGTERM

fg (foreground)

- -On UNIX shells, this command sends a CONT signal
- Resume execution of the process (that was suspended with Ctrl-Z or a command "bg")
- See man pages for fg and bg

Predefined and Defined Signals

- Find out the predefined signals
 % kill -1
 - % HUP INT QUIT ILL TRAP ABRT BUS FPE KILL USR1 SEGV USR2 PIPE ALRM TERM STKFLT CHLD CONT STOP TSTP TTIN TTOU URG XCPU XFSZ VTALRM PROF WINCH POLL PWR SYS RTMIN RTMIN+1 RTMIN+2 RTMIN+3 RTMAX-3 RTMAX-2 RTMAX-1 RTMAX
- Applications can define their own signals

 An application can define signals with unused values

Some Predefined Signals in UNIX

#define	SIGHUP	1	/*	Hangup (POSIX). */
<pre>#define</pre>	SIGINT	2	/*	Interrupt (ANSI). */
#define	SIGQUIT	3	/*	Quit (POSIX). */
<pre>#define</pre>	SIGILL	4	/*	Illegal instruction (ANSI). */
#define	SIGTRAP	5	/*	Trace trap (POSIX). */
<pre>#define</pre>	SIGABRT	6	/*	Abort (ANSI). */
#define	SIGFPE	8	/*	Floating-point exception (ANSI). */
<pre>#define</pre>	SIGKILL	9	/*	Kill, unblockable (POSIX). */
#define	SIGUSR1	10	/*	User-defined signal 1 (POSIX). */
<pre>#define</pre>	SIGSEGV	11	/*	Segmentation violation (ANSI). */
#define	SIGUSR2	12	/*	User-defined signal 2 (POSIX). */
#define	SIGPIPE	13	/*	Broken pipe (POSIX). */
<pre>#define</pre>	SIGALRM	14	/*	Alarm clock (POSIX). */
<pre>#define</pre>	SIGTERM	15	/*	Termination (ANSI). */
#define	SIGCHLD	17	/*	Child status has changed (POSIX). */
<pre>#define</pre>	SIGCONT	18	/*	Continue (POSIX). */
<pre>#define</pre>	SIGSTOP	19	/*	<pre>Stop, unblockable (POSIX). */</pre>
<pre>#define</pre>	SIGTSTP	20	/*	Keyboard stop (POSIX). */
#define	SIGTTIN	21	/*	Background read from tty (POSIX). */
#define	SIGTTOU	22	/*	Background write to tty (POSIX). */
#dofine	STOPPOP	27	/*	Profiling alarm glock (4.2 PGD) */

Signal Handling

- Signals have default handlers
 - -Usually, terminate the process and generate core image
- Programs can over-ride default for most signals
 - Define their own handlers
 - Ignore certain signals, or temporarily block them
- Two signals are not "catchable" in user programs – KILL
 - Terminate the process immediately
 - Catchable termination signal is TERM
 - -STOP
 - · Suspend the process immediately
 - Can resume the process with signal CONT
 - Catchable suspension signal is TSTP

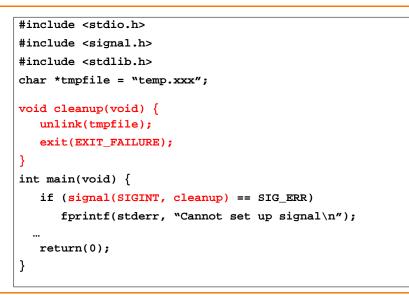
Installing A Signal Handler

- Predefined signal handlers - sig_DFL: Default handler
 - -sig_ign: Ignore the signal
- To install a handler, use #include <signal.h>

typedef void (*sighandler_t)(int); sighandler_t signal(int sig, sighandler_t handler);

- -Handler will be invoked, when signal sig occurs
- -Return the old handler on success; **sig_err** on error
- On most UNIX systems, after the handler executes, the OS resets the handler to sig_DFL

Example: Clean Up Temporary File



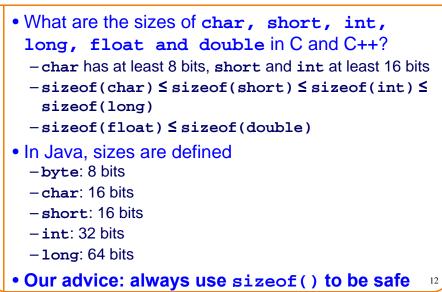
Program generates a lot of intermediate results

 Store the data in a temporary file (e.g., "temp.xxx")
 Remove the file when the program ends (i.e., unlink)

```
#include <stdio.h>
char *tmpfile = "temp.xxx";
int main() {
   FILE *fp;
   fp = fopen(tmpfile, "rw");
   ...
   fclose(fp);
   unlink(tmpfile);
   return(0);
}
```

Solution: Clean-Up Signal Handler

Portability



- Multiple kinds of hardware
 - 32-bit Intel Architecture
 - -64-bit IA, PowerPC, Sparc, MIPS, Arms, ...
- Multiple operating systems

 Linux
 - -Windows, Mac, Sun, AIX, ...
- Multiple character sets
 ASCII
 - -Latin-1, unicode, ...
- Multiple byte orderings
 - Little endian
 - Big endian

Size of Data Types

Order of Evaluation

13

- Order of evaluation may be ambiguous
 - -strings[i] = names[++i];
 - i can be incremented before or after indexing strings!
 - -printf("%c %c\n", getchar(), getchar());
 - The second character in stdin can be printed first!
- What are the rules in C and C++?
 Side effects and function calls must be completed at ";"
- Our advice: do not depend on the order of evaluation in an expression

Alignment of Structures and Unions 🐱

Structure consisting of multiple elements struct Foo { char x; int y; }
Items are laid out in the order of declaration
But, the alignment is undefined

- There might be holes between the elements - E.g., \mathbf{y} may be 2, 4, or 8 bytes from \mathbf{x}

Internationalization

- Don't assume ASCII
 - Many countries do not use English
 - -Asian languages use 16 bits per character
- Standardizations
 - -Latin-1 augments ASCII by using all 8 bits
 - Unicode uses 16 bits per character
 - -Java uses Unicode as its native character set for strings
- Issues with Unicode
 - Byte order issue!
 - Solution: use UTF-8 as an intermediate representation or define the byte order for each character

Avoid Conditional Compilation

Writing platform-specific code is possible

 some common code
 #ifdef MAC
 #else
 #ifdef WINDOWSXP
 #endif

 But, #ifdef code is difficult to manage

 Platform-specific code may be all over the place
 Plus, each part requires separate testing

Isolation

· Common feature may not always work: Life is hard

- Localize system dependencies in separate files

 Separate file to wrap the interface calls for each system
 Example: unix.c, windows.c, mac.c, …
- Hide system dependencies behind interfaces

 Abstraction can serve as the boundary between portable and non-portable components
- Java goes one big step further
 - -Virtual machine which abstracts the entire machine
 - -Independent of operating systems and the hardware

Course Wrap Up

Lessons About Computer Science

Modularity

- -Well-defined interfaces between components
- Allows changing the implementation of one component without changing another
- The key to managing complexity in large systems
- Resource sharing
 - Time sharing of the CPU by multiple processes
 - Sharing of the physical memory by multiple processes

Indirection

- -Representing address space with virtual memory
- Manipulating data via pointers (or addresses)

19

Lessons Continued

Hierarchy

- -Memory: registers, cache, main memory, disk, tape, ...
- -Balancing the trade-off between fast/small and slow/big
- Bits can mean anything
 - -Code, addresses, characters, pixels, money, grades, ...
 - -Arithmetic is just a lot of logic operations
 - The meaning of the bits depends entirely on how they are accessed, used, and manipulated

Stay tuned for final exam review session details...