
1

Signals and
Writing Portable Programs and

Course Wrap-Up

Prof. David August

COS 217

2

Signals
• Event notification sent to a process at any time

– An event generates a signal
– OS stops the process immediately
– Signal handler executes and completes
– The process resumes where it left off

movl
pushl
call foo
addl
movl
.
.
.

Process

handler()
{
…
}

signal

3

Signals Can Originate From:
• Keyboard:

–Ctrl-C INT signal (process terminates)
–Ctrl-Z TSTP signal (process suspends)
–Ctrl-\ ABRT signal (process dumps core)

• Program itself:
– Illegal memory reference SIGSEGV (segmentation

fault)
– The kill and raise library functions. Example: send a

signal to self:
if (kill(getpid(), SIGABRT))

exit(0);
4

Signals Can Originate From:
• Command Line:

kill -<signal> <PID>
– Example: kill -INT 1234

Send the INT signal to process with PID 1234
Same as pressing Ctrl-C if process 1234 is running

– If no signal specified, the default is SIGTERM

fg (foreground)
– On UNIX shells, this command sends a CONT signal
– Resume execution of the process (that was suspended

with Ctrl-Z or a command “bg”)
– See man pages for fg and bg

5

Predefined and Defined Signals
• Find out the predefined signals
% kill –l
% HUP INT QUIT ILL TRAP ABRT BUS FPE KILL
USR1 SEGV USR2 PIPE ALRM TERM STKFLT CHLD
CONT STOP TSTP TTIN TTOU URG XCPU XFSZ
VTALRM PROF WINCH POLL PWR SYS RTMIN
RTMIN+1 RTMIN+2 RTMIN+3 RTMAX-3 RTMAX-2
RTMAX-1 RTMAX

• Applications can define their own signals
– An application can define signals with unused values

6

Some Predefined Signals in UNIX
#define SIGHUP 1 /* Hangup (POSIX). */
#define SIGINT 2 /* Interrupt (ANSI). */
#define SIGQUIT 3 /* Quit (POSIX). */
#define SIGILL 4 /* Illegal instruction (ANSI). */
#define SIGTRAP 5 /* Trace trap (POSIX). */
#define SIGABRT 6 /* Abort (ANSI). */
#define SIGFPE 8 /* Floating-point exception (ANSI). */
#define SIGKILL 9 /* Kill, unblockable (POSIX). */
#define SIGUSR1 10 /* User-defined signal 1 (POSIX). */
#define SIGSEGV 11 /* Segmentation violation (ANSI). */
#define SIGUSR2 12 /* User-defined signal 2 (POSIX). */
#define SIGPIPE 13 /* Broken pipe (POSIX). */
#define SIGALRM 14 /* Alarm clock (POSIX). */
#define SIGTERM 15 /* Termination (ANSI). */
#define SIGCHLD 17 /* Child status has changed (POSIX). */
#define SIGCONT 18 /* Continue (POSIX). */
#define SIGSTOP 19 /* Stop, unblockable (POSIX). */
#define SIGTSTP 20 /* Keyboard stop (POSIX). */
#define SIGTTIN 21 /* Background read from tty (POSIX). */
#define SIGTTOU 22 /* Background write to tty (POSIX). */
#define SIGPROF 27 /* Profiling alarm clock (4.2 BSD). */

7

Signal Handling
• Signals have default handlers

– Usually, terminate the process and generate core image

• Programs can over-ride default for most signals
– Define their own handlers
– Ignore certain signals, or temporarily block them

• Two signals are not “catchable” in user programs
– KILL

Terminate the process immediately
Catchable termination signal is TERM

– STOP
Suspend the process immediately
Can resume the process with signal CONT
Catchable suspension signal is TSTP

8

Installing A Signal Handler
• Predefined signal handlers

–SIG_DFL: Default handler
–SIG_IGN: Ignore the signal

• To install a handler, use
#include <signal.h>

typedef void (*sighandler_t)(int);
sighandler_t signal(int sig, sighandler_t handler);

– Handler will be invoked, when signal sig occurs
– Return the old handler on success; SIG_ERR on error
– On most UNIX systems, after the handler executes, the

OS resets the handler to SIG_DFL

9

Example: Clean Up Temporary File
• Program generates a lot of intermediate results

– Store the data in a temporary file (e.g., “temp.xxx”)
– Remove the file when the program ends (i.e., unlink)

#include <stdio.h>

char *tmpfile = “temp.xxx”;
int main() {

FILE *fp;

fp = fopen(tmpfile, “rw”);

…
fclose(fp);

unlink(tmpfile);

return(0);
} 10

Solution: Clean-Up Signal Handler
#include <stdio.h>

#include <signal.h>

#include <stdlib.h>

char *tmpfile = “temp.xxx”;

void cleanup(void) {
unlink(tmpfile);

exit(EXIT_FAILURE);

}

int main(void) {

if (signal(SIGINT, cleanup) == SIG_ERR)

fprintf(stderr, “Cannot set up signal\n”);
…
return(0);

}

11

Portability
• Multiple kinds of hardware

– 32-bit Intel Architecture
– 64-bit IA, PowerPC, Sparc, MIPS, Arms, …

• Multiple operating systems
– Linux
– Windows, Mac, Sun, AIX, …

• Multiple character sets
– ASCII
– Latin-1, unicode, …

• Multiple byte orderings
– Little endian
– Big endian

12

Size of Data Types
• What are the sizes of char, short, int,
long, float and double in C and C++?
–char has at least 8 bits, short and int at least 16 bits
–sizeof(char) ≤ sizeof(short) ≤ sizeof(int) ≤
sizeof(long)

–sizeof(float) ≤ sizeof(double)
• In Java, sizes are defined

–byte: 8 bits
–char: 16 bits
–short: 16 bits
–int: 32 bits
–long: 64 bits

• Our advice: always use sizeof() to be safe

13

Order of Evaluation
• Order of evaluation may be ambiguous

–strings[i] = names[++i];
i can be incremented before or after indexing strings!

–printf(“%c %c\n”, getchar(), getchar());
The second character in stdin can be printed first!

• What are the rules in C and C++?
– Side effects and function calls must be completed at “;”

• Our advice: do not depend on the order of
evaluation in an expression

14

Alignment of Structures and Unions
• Structure consisting of multiple elements

struct Foo {
char x;
int y;

}

• Items are laid out in the order of declaration

• But, the alignment is undefined
– There might be holes between the elements
– E.g., y may be 2, 4, or 8 bytes from x

15

Internationalization
• Don’t assume ASCII

– Many countries do not use English
– Asian languages use 16 bits per character

• Standardizations
– Latin-1 augments ASCII by using all 8 bits
– Unicode uses 16 bits per character
– Java uses Unicode as its native character set for strings

• Issues with Unicode
– Byte order issue!
– Solution: use UTF-8 as an intermediate representation or

define the byte order for each character
16

Avoid Conditional Compilation
• Writing platform-specific code is possible

…
some common code
#ifdef MAC
…
#else
#ifdef WINDOWSXP
…
#endif
#endif

• But, #ifdef code is difficult to manage
– Platform-specific code may be all over the place
– Plus, each part requires separate testing

17

Isolation
• Common feature may not always work: Life is hard

• Localize system dependencies in separate files
– Separate file to wrap the interface calls for each system
– Example: unix.c, windows.c, mac.c, …

• Hide system dependencies behind interfaces
– Abstraction can serve as the boundary between portable

and non-portable components

• Java goes one big step further
– Virtual machine which abstracts the entire machine
– Independent of operating systems and the hardware

18

Course Wrap Up

19

Lessons About Computer Science
• Modularity

– Well-defined interfaces between components
– Allows changing the implementation of one component

without changing another
– The key to managing complexity in large systems

• Resource sharing
– Time sharing of the CPU by multiple processes
– Sharing of the physical memory by multiple processes

• Indirection
– Representing address space with virtual memory
– Manipulating data via pointers (or addresses)

20

Lessons Continued
• Hierarchy

– Memory: registers, cache, main memory, disk, tape, …
– Balancing the trade-off between fast/small and slow/big

• Bits can mean anything
– Code, addresses, characters, pixels, money, grades, …
– Arithmetic is just a lot of logic operations
– The meaning of the bits depends entirely on how they

are accessed, used, and manipulated

Stay tuned for final exam review session details…

