Processes and Pipes

COS 217
Prof. David August

When to Change Which Process is Running?

O

* When a process is stalled waiting for 1/O
o Better utilize the CPU, e.g., while waiting for disk access

1_ CPU /0 CPU 1/O CPU 1/O

2 - CPU /10 CPU 1/O CPU 1/O

* When a process has been running for a while

o Sharing on a fine time scale to give each process the
illusion of running on its own machine

o Trade-off efficiency for a finer granularity of fairness

2/

-

Life Cycle of a Process

e Running: instructions are being executed

« Waiting: waiting for some event (e.g.,

/O finish)

 Ready: ready to be assigned to a processor

— Ready —

— [Termination

-

Switching Between Processes

Process 1 Process 2
Running fSav?:ontext i Waiting
Load CU
Waiting Running

Save cm
Running \L&dcontext i Waiting

v

-

Fork

» Create a new process (system call)

o child process inherits state from parent process
o parent and child have separate copies of that state
o parent and child share access to any open files

pid = fork(); Parent

if (pid != 0) {
/* in parent */

} else {
/* in child */

\ Child

-

Fork

* Inherited:
ouser and group IDs
o signal handling settings
o stdio
o file pointers
o current working directory
o root directory
o file mode creation mask
o resource limits
o controlling terminal
o all machine register
states
o control register(s)

°. ..

* Separate in child
o process ID
o address space (memory)
o file descriptors
o parent process |ID
o pending signals
o timer signal reset times

©. ..

-

Walit

« Parent waits for a child (system call)
o blocks until a child terminates
o returns pid of the child process

o returns —1 if no children exists (already exited)
o status

#include <sys/types.h>
#include <sys/wait.h>

pid t wait(int *status);

« Parent waits for a specific child to terminate

#include <sys/types.h>
#include <sys/wait.h>

pid t waitpid(pid t pid, int *status, int options);

-

Exec

« Overlay current process image with a specified image file
(system call)

o affects process memory and registers
o has no affect on file table

« Example:
execlp (“ls”, “ls”, “-1"”, NULL);
fprintf (stderr, “exec failed\n”);
exit (1) ;

-

Fork/Exec

« Commonly used together by the shell

. parse command line ...
pid = fork()
if (pid -1)

fprintf (stderr, “fork failed\n”);
else if (pid == 0) {

/* in child */

execvp(file, argv);

fprintf (stderr,

“exec failed\n”);

} else {
/* in parent */

c¢sh

/\::_‘E or]_c)
l"-;ﬂq;-“\

T

pid = wait(&status);

1ls

. return to top of loop ...

T s iy e a
(execvp) (wait

-

System

« Convenient way to invoke fork/exec/wait

o Forks new process
o Execs command
o Waits until it is complete

int system(const char *cmd);

« Example:

int main{()

{
}

system (“echo Hello world”);

J

-

Networks

« Mechanism by which two processes exchange information
and coordinate activities

_ ~ Y
Computer <)t

LI LN

Network

Computer

®eo

Computer

1

-

Interprocess Communication

» Pipes
o Processes must be on same machine
= One process spawns the other
« Used mostly for filters

« Sockets
= Processes can be on any machine
« Processes can be created independently
« Used for clients/servers, distributed systems, etc.

2

-

Pipes

* Provides an interprocess communication channel

output
Process A L.

g t
PR Process B

¥

« Afilter is a process that reads from stdin and writes to
stdout

Progl

¥

atdin -
Filter

stdc::utIr

Filter—4___ }—

Filter—{__ [

Prog2

8

-

Creating a Pipe

Process B

output 7\ input
Process A ' P

« Pipe is a communication channel abstraction
o Process A can write to one end using “write” system call
o Process B can read from the other end using “read” system call

« System call
int pipe(int £d4[2]);
return 0 upon success -1 upon failure
fd[0] is open for reading
fd[l] is open for writing

« Two coordinated processes created by fork can pass
data to each other using a pipe.

Y

-

Pipe Example

int pid, pl[2];

if (pipe(p) == -1)
exit(1);

pid = fork();

if (pid == 0) {

close(p[l]);

. read using p[0] as f£d until EOF ...

. write using p[l] as £fd ...
closzse(p[l]); /* sends EOF to reader */

}

else {
close(p[0]);
wait (&status) ;

}

parent

write . ¢ read ,

child

)

-

Dup

* Duplicate a file descriptor (system call)
int dup(int £d4d);
duplicates £d as the lowest unallocated descriptor

« Commonly used to implement redirection of
stdin/stdout

« Example: redirect stdin to “foo”
int £d;
fd = open(“foo”, O RDONLY, 0);
close(0);
dup (£4) ;
close(£fd);

)

-

Dup?2

* For convenience...
dup2(int £d1, int £d2);
use £d42 (new) to duplicate £d1 (o014d)
closes £42 If it was in use

« Example: redirect stdin to “foo”
fd = open(“foo”, O RDONLY, 0);
dup2 (£4,0) ;
close(£fd) ;

"

-

Pipes and Stdio

int pid, pl2];

if (pipe(p) == -1)
exit (1) ;

pid = fork();

if (pid == 0) {
close(p[1l]);
dup2 (p[0],0);
close(p[0]);

read from stdin ...

}

else {
close(p[0]);
dup2 (p[1].,1);
close(pl[l]);

. write to stdout ...

wait (&status) ;
} fd=1

fd=0

write .
parent stdout

A read

“stdin

child

o)

-

Pipes and Exec

int pid, pl2];

if (pipel(p) == -1)
exit (1) ;

pid = fork();

if (pid == 0) {
close(p[1l]);
dup2 (p[0]1,0);
close(p[0]);

execl(...);
}
else {

close(p[0]);

dup2 (p[1],1);

close(p[l]);

. write to stdout ...

wait (&status) ; £d4=0

} fd=1 =
, write mread :
parent m‘ Tstdin | chald

J

-

A Unix Shelll

» Loop
o Read command line from stdin
o Expand wildcards
o Interpret redirections < > |
o pipe (as necessary), fork, dup, exec, wait

« Start from code on previous slides, edit it until it's a Unix
shelll

J

	Processes and Pipes
	When to Change Which Process is Running?
	Life Cycle of a Process
	Switching Between Processes
	Fork
	Fork
	Wait
	Exec
	Fork/Exec
	System
	Networks
	Interprocess Communication
	Pipes
	Creating a Pipe
	Pipe Example
	Dup
	Dup2
	Pipes and Stdio
	Pipes and Exec
	A Unix Shell!

