Operating Systems
and Protection

Prof. David August

COS 217

-

Goals of Today’s Lecture

* How multiple programs can run at once

o Processes

o Context switching

o Process control block
o Virtual memory

» Boundary between parts of the system

o User programs
o Operating system
o Underlying hardware

» Mechanics of handling a page fault

o Page tables
o Process ID registers
o Page faults

-

Operating System

» Supports virtual machines

o Promises each process the illusion of having whole

machine to itself

* Provides services:
o Protection
o Scheduling
o Memory management
o File systems
o Synchronization
o etc.

User
Process

User
Process

Operating System

Hardware

s
What is a Process? ng

~

* A process is a running program with its own ...
o Processor state
— EIP, EFLAGS, registers
o Address space (memory)
—Text, bss, data, heap, stack

User User
» Supporting the abstraction Process | | Process
o Processor

— Saving state per process

— Context switching Operating System

o Main memory

— Sharing physical memory
— Supporting virtual memory

Hardware

o Efficiency, fairness, protection

Y

-

Divide Hardware into Little Pieces?@

~

User User
Process Process

Operating System

Hardware

* Idea: registers, memory, ALU, etc. per process
o Pro: totally independent operation of each process
o Con: lots of extra hardware;
some parts idle at any given time;
hard limit on the number of processes

>/

-
Indirection, and Sharing in Time? g@g

~

User User
Process Process

Operating System

Hardware

* Idea: swap processes in and out of the CPU,;
map references into physical addresses
o Pro: make effective use of the resources by sharing

o Con: overhead of swapping processes;
overhead of mapping memory references

4)
When to Change Which Process is Running?

) g

* When a process is stalled waiting for 1/0
o Better utilize the CPU, e.g., while waiting for disk access

1- CPU /10 CPU Ife} CPU 110

- CPU /0 CPU /0 CPU lfe}

* When a process has been running for a while

o Sharing on a fine time scale to give each process the
illusion of running on its own machine

o Trade-off efficiency for a finer granularity of fairness

- N
Life Cycle of a Process

* Running: instructions are being executed

» Waiting: waiting for some event (e.g., I/O finish)

» Ready: ready to be assigned to a processor

—| Ready —>.—> Termination
‘ 8)

4)
Switching Between Processes
Process 1 Process 2
Running montext 1 Waiting

Load context
Waiting Running

Save cm
Running { wonte’“ Waiting

s

~
Context Switch: What to Save & Load?

fammr g

e Process state

o New, ready, waiting, halted

» CPU regqisters

o EIP, EFLAGS, EAX, EBX, ...

* 1/O status information
o Open files, I/O requests,

* Memory management information

o Page tables

» Accounting information
o Time limits, group ID, ...

» CPU scheduling information

o Priority, queues

-

Process Control Block

» For each process, the OS keeps track of ...

o Process state
o CPU registers

CPU scheduling information

Accounting information

o]
o Memory management information
o
o

I/O status information

PCB1

PCB2

PCB3

OS’s memory

Process
1’s

memory

ready
EIP
EFLAGS
EAX
EBX
etc.
Process Process
2’s 3’s
memory memory

-

Sharing Memory

.

fammr g

* In the old days...
o MS-DOS (1990)

o Original Apple Macintosh (1984)

» Problem: protection

o What prevents process 1 from reading/writing

process 3's memory?

o What prevents process 2 from reading/writing

OS’s memory?

Process
3’s

memory

Process
2’s
memory

Process
1’s

memory

* In modern days, Virtual Memory protection | PcB1

o IBM VM-370 (1970)
o UNIX (1975)
o MS Windows (2000)

PCB2

PCB3

0S’s
memory

4)
Virtual Memory

 Give each process illusion of large address space
o E.g., 32-bit addresses that reference 4 Gig of memory

* Divide the physical memory into fixed-sized pages
o E.g., 4 Kilobyte pages
» Swap pages between disk and main memory

o Bring in a page when a process accesses the space
o May require swapping out a page already in memory

» Keep track of where pages are stored in memory
o Maintain a page table for each process to do mapping

* Treat address as page number and offset in page
o High-order bits refer to the page

o Low-order bits refer to the offset in the page 13)
4)
Virtual Memory for a Process
Address
Translation
— 200155,
‘....,‘-offs"et in page _
k offset in page
virtual physical
page number page number
0
Virtual Address Space Physical Address Space 14)
4)
Virtual Memory)
..... ! 0
2 b e
................................ 0
1 o H
‘__.‘.‘.'_'.'-4 2
0 ‘,....--w '--..,.-'-’::a:.-..........,;__
..... 1
Process 1 Virtual O
Address Space 0 - 1
Process 2 Virtual 0 0
Address Space Physical
OS Address Space 15)

\/ A <

s

2
Address Space 1
Process 1 Virtual 0
Address Space

OS Address Space

Page Tables) &Qg
: 6
2
Process 5 - 0
Number —
S o]
1
4
1 0 6
0 3 2
0
1
Process 2 Virtual 2
Address Space .
111
Process 1 Virtual 0 0
Address Space %hysical
OS Address Space
VAS
-
Page Tables Reside in Mermory... &gg
6
0
5
2
4
1
2
3
0
1
Process 2 Virtual

VAS
-
Pr ID Register 7
0Cess egiste) 23
R 6
2 2 0
5 5
] 0
1 4
0 —
0 6 2
5 3
Process 2 1
2
Process ID .
1
address _
virtuz;i offset in page 0 0
page number Physical
Address Space

1)

s

Protection Between Processes

~

[3]
2 2
5
1 2 1
1 4
0 0
Process 2

Process ID
[

o oﬁget in page
virtual Pag
page number

address

» User-mode (unprivileged)
process cannot modify
Process ID register

o | * If page tables are set up

correctly, process #1 can
access only its own pages
in physical memory

* The operating system sets
up the page tables

Page Fault!

)
!)
Pag Ing ®
2 ---
1 2
1
O 2
0 3
Process 2 :
2
Process ID
1
1
address _ :
virtuaj Offsetin page ;
page number PhySicaI
Address Space)
!)

1 2

[EEN

0

Process 2

Process ID

1
1
[I
movl 0002104, %eax 0 0
Physical
Address Space 2)

s

[EEN

0

Process 2

Process ID

movl 0002104, %eax

0

0
Physical
Address Space

2)

-

Fetch Current Page, Adjust Page Tables

~

yy
2 2
3
1 2 1
1 4
0 0 6
0

Process 2

Process ID

movl

0002104, %eax

0

0
Physical
Address Space

2)

-

Measuring the Memory Usage

gnfn'
ok
y,

fammr g

Virtual memory usage

Physical memory usage (“resident set size”)

Unix CPU time used by this process so far
A | |
% ps I)
F UID PID PPID PRI Vsz RSS STAT TIME COMMAND
0 115 7264 7262 17 4716 1400 SN 0:00 -csh
0 115 7290 7264 17 15380 10940 SN 5:52 emacs
0 115 3283 7264 23 2864 812 RN 0:00 ps |
; -1olx]
WindoWS Fle Options View Hejp :

applications [Frocesses | erformance | I

tmage Name | pio [cpu | cPu Time [Mem Us... [Page Fa.. [vmsize [

inetci32.exe 580 00 00004 2,084K 557 552 K
ps_agent.ene 596 00 00000 3,436K 931 1,224K
lap.exe 612 00 0:00i02 120K 41,224 584K
qitack exe 1180 00 00000 1,348K 345 3EK J
POWERPNT.EXE 11883 00 863255 7,444K 753920 67,624K
acrofray exe 1208 00 0:00:00 5,848 K 1,970 2,368 K
INTERNAT.EXE 1216 00 00000 L656K 463 360K
mozilla.exe 1228 00 0:14:18 62,664K 159,297 S9,600K
Acrobat.exe 2% 00 ooois 4smsek loiosy 47zenk 7l

End Process

Processes: 38

[cPU Usage: 09

|MEFH Usage: 329780K / 1277168K

A

2

e

Context Switch, in More Detalil

XA
]

~

|

Process 1

Running

’ Save context ‘

’ Load ;:ontext ‘

Waiting

’ Save context ‘

Running T ’ Load context ‘

Process 2

} Waiting

Running

Waiting

%)
4)
Context Switch, in More Detail
Process 1
page fault
Running addl %eax, %e/
movl —8(%ebp), %eax
i addl %eax, %ecx
Waiting |
% Process? i % PCB1
| 1s™ PCB2
1 memory E PCB3
Running - 0S’s
Registers
memory
%)
4)
Context Switch, in More Detail
Process 1 Fault-handler hardware
1. Enters privileged mode
2. Sets EIP to specific location
Running in operating system
zgs: %g?;/(éb%scxveax Sets ESP to operating-
' addl Wea; OF/)e(’:x ’ system stack in OS memory
! eas. 4. Pushes old (process 1) EIP
i and ESP on OS stack
Waiting |
! - [=
} < ~ T _"//
| P 1 —
i foceis/ H = PCB1
! 1's — PCB2
1 memory — PCB3
. — | ,
Running Registers [0S’
memory
7)

4)

Context Switch, in More Detail
Process 1 OS software
5. Pops saved EIP,ESP into
PCB1
Running addl %eax. %ecx 6. Copies rest of registers into

movl —8(%ebp), %eax PCBL

addl %eax, %eex 7. Sends instructions to disk

drive to fetch page

|
Waiting |
i \K\‘_(/
! Proess | == 1
| — ==
i 1’s — PCB2
1 memory — PC83
. — | ,
Running Registers |©S’s
memory
®)
e)
Resuming Some Other Process
OS software Hardware
8. Sets process-ID register to 2 12. Pops EIP,ESP into registers
9. Pushes saved EIP,ESP from 13. Switches back to
PCB2 onto OS stack unprivileged mode
10. Copies rest of registers from 14. Resumes where process 2
PCB2 left off last time
11. Executes “return from interrupt”
instruction
\K\‘_(/
Process | = 1
— =
1’s — PCB2
memory — PC83
— | ,
Registers | ©S’s
memory
®)
e)
System call, just another kind of fault
Process 1
system call
. (privileged instruction)
Running mov $4 ,%ea
int $0x80

addl %eax, %ecx

|
Waiting |
% Process? i % PCB1
| 1s™ PCB2
1 memory E PC83
Runnin ,
g Registers 0S’s
memory

s

~
Summary ﬁ@

 Abstraction of a “process”
o CPU: a share of CPU resources on a small time scale
o Memory: a complete address space of your own

» OS support for the process abstraction
o CPU: context switch between processes
o Memory: virtual memory (VM) and page replacement
o Files: open/read/write, rather than “move disk head”
o Protection: ensure process access only its own resources

» Hardware support for the process abstraction
o Context switches, and push/pop registers on the stack
o Switch between privileged and unprivileged modes
o Map VM address and process ID to physical memory Y

