
1

Operating Systems
and Protection

Prof. David August

COS 217

2

Goals of Today’s Lecture
• How multiple programs can run at once
o Processes
o Context switching
o Process control block
o Virtual memory

• Boundary between parts of the system
o User programs
o Operating system
o Underlying hardware

• Mechanics of handling a page fault
o Page tables
o Process ID registers
o Page faults

3

Operating System
• Supports virtual machines
o Promises each process the illusion of having whole

machine to itself

• Provides services:
o Protection
o Scheduling
o Memory management
o File systems
o Synchronization
o etc.

Hardware

Operating System

User
Process

User
Process

4

What is a Process?
• A process is a running program with its own …
o Processor state

– EIP, EFLAGS, registers
o Address space (memory)

– Text, bss, data, heap, stack

• Supporting the abstraction
o Processor

– Saving state per process
– Context switching

o Main memory
– Sharing physical memory
– Supporting virtual memory

o Efficiency, fairness, protection

Hardware

Operating System

User
Process

User
Process

5

Divide Hardware into Little Pieces?

• Idea: registers, memory, ALU, etc. per process
o Pro: totally independent operation of each process
o Con: lots of extra hardware;

some parts idle at any given time;
hard limit on the number of processes

Operating System

User
Process

User
Process

Hardware

6

Indirection, and Sharing in Time?

• Idea: swap processes in and out of the CPU;
map references into physical addresses

o Pro: make effective use of the resources by sharing
o Con: overhead of swapping processes;

overhead of mapping memory references

Hardware

Operating System

User
Process

User
Process

7

When to Change Which Process is Running?

• When a process is stalled waiting for I/O
o Better utilize the CPU, e.g., while waiting for disk access

• When a process has been running for a while
o Sharing on a fine time scale to give each process the

illusion of running on its own machine
o Trade-off efficiency for a finer granularity of fairness

CPU CPU CPUI/O I/O I/O1:
CPU CPU CPUI/O I/O I/O2:

8

Life Cycle of a Process
• Running: instructions are being executed

• Waiting: waiting for some event (e.g., I/O finish)

• Ready: ready to be assigned to a processor

Create Ready Running Termination

Waiting

9

Switching Between Processes

Running

Running

Save context

Load context

Save context

Load context

...

...

Process 1 Process 2

RunningWaiting

Waiting

Waiting

10

Context Switch: What to Save & Load?
• Process state

o New, ready, waiting, halted

• CPU registers
o EIP, EFLAGS, EAX, EBX, …

• I/O status information
o Open files, I/O requests, …

• Memory management information
o Page tables

• Accounting information
o Time limits, group ID, ...

• CPU scheduling information
o Priority, queues

11

Process Control Block
• For each process, the OS keeps track of ...

o Process state
o CPU registers
o CPU scheduling information
o Memory management information
o Accounting information
o I/O status information

ready
EIP

EFLAGS
EAX
EBX

...
etc.

PCB3

PCB2

PCB1

OS’s memory

Process

1’s

memory

Process

2’s

memory

Process

3’s

memory

12

Sharing Memory
• In the old days…
o MS-DOS (1990)
o Original Apple Macintosh (1984)

• Problem: protection
o What prevents process 1 from reading/writing

process 3’s memory?
o What prevents process 2 from reading/writing

OS’s memory?

• In modern days, Virtual Memory protection
o IBM VM-370 (1970)
o UNIX (1975)
o MS Windows (2000)

PCB3
PCB2
PCB1

OS’s
memory

Process

1’s

memory

Process
2’s

memory

Process

3’s

memory

13

Virtual Memory
• Give each process illusion of large address space
o E.g., 32-bit addresses that reference 4 Gig of memory

• Divide the physical memory into fixed-sized pages
o E.g., 4 Kilobyte pages

• Swap pages between disk and main memory
o Bring in a page when a process accesses the space
o May require swapping out a page already in memory

• Keep track of where pages are stored in memory
o Maintain a page table for each process to do mapping

• Treat address as page number and offset in page
o High-order bits refer to the page
o Low-order bits refer to the offset in the page

14

Virtual Memory for a Process

Virtual Address Space Physical Address Space

Address
Translation

address

0

virtual
page number

offset in page

physical
page number

offset in page

15

Virtual Memory

Process 2 Virtual
Address Space Physical

Address Space

0

1Process 1 Virtual
Address Space

0

1

2

1

0

1

2

0

0

1

OS
V.A.S.

0

1

16

Page Tables

Process 1 Virtual
Address Space Physical

Address Space

0

1Process 2 Virtual
Address Space

0

1

2

1

0

1

2

0

0

1

0

1

0

1

2

3

4

5

63
2
5

1
4

6
0

0
1
2

Process
Number

OS
V.A.S.

17

Page Tables Reside in Memory...

Process 1 Virtual
Address Space Physical

Address Space

0

1Process 2 Virtual
Address Space

0

1

2

1

0

1

2

0

0

1

0

1

6

2

3

4

5

OS
V.A.S.

18

Process ID Register

Physical
Address Space

Process 2

0

1

2

1

0

1

2

0

0

1

0

1

2

3

4

5

6

2Process ID

address

virtual
page number

offset in page

3
2
5

1
4

6
0

0
1
2

19

Protection Between Processes

Process 2

0

1

2
3
2
5

1
4

6
0

0
1
2

2

virtual
page number

offset in page

Process ID

address

• User-mode (unprivileged)
process cannot modify
Process ID register

• If page tables are set up
correctly, process #1 can
access only its own pages
in physical memory

• The operating system sets
up the page tables

20

Paging

Process 2

0

1

2
3
2
xx

1
4

6
0

0
1
2

2

virtual
page number

offset in page

Process ID

address

Physical
Address Space

1

1

2

0
0

1

2

3

21

Page Fault!

Process 2

0

1

2
3
2
xx

1
4

6
0

0
1
2

2Process ID

Physical
Address Space

1

1

2

0
0

1

2

3

movl 0002104, %eax

22

Write Some Other Page to Disk

Process 2

0

1

2
yy
2
xx

1
4

6
0

0
1
2

2Process ID

Physical
Address Space

1

1

0
0

1

2

3

movl 0002104, %eax

2

23

Fetch Current Page, Adjust Page Tables

Process 2

0

1

2
yy
2
3

1
4

6
0

0
1
2

2Process ID

Physical
Address Space

1

1

0

0
0

1

2

3

movl 0002104, %eax

24

Measuring the Memory Usage

% ps l

F UID PID PPID PRI VSZ RSS STAT TIME COMMAND

0 115 7264 7262 17 4716 1400 SN 0:00 -csh

0 115 7290 7264 17 15380 10940 SN 5:52 emacs

0 115 3283 7264 23 2864 812 RN 0:00 ps l

Virtual memory usage
Physical memory usage (“resident set size”)
CPU time used by this process so farUnix

Windows

25

Context Switch, in More Detail

Running

Running

Save context

Load context

Save context

Load context

...

...

Process 1 Process 2

RunningWaiting

Waiting

Waiting

26

Context Switch, in More Detail

Running

Running

Waiting

Process 1

addl %eax, %ecx
movl –8(%ebp), %eax
addl %eax, %ecx
.
.
.

page fault

PCB3
PCB2
PCB1

OS’s
memory

Process

1’s

memory

Registers

27

Context Switch, in More Detail

addl %eax, %ecx
movl –8(%ebp), %eax
addl %eax, %ecx
.
.
.

Fault-handler hardware
1. Enters privileged mode
2. Sets EIP to specific location

in operating system
3. Sets ESP to operating-

system stack in OS memory
4. Pushes old (process 1) EIP

and ESP on OS stack

Process

1’s

memory

Registers

PCB3
PCB2
PCB1

OS’s
memory

Running

Running

Waiting

Process 1

28

Context Switch, in More Detail

addl %eax, %ecx
movl –8(%ebp), %eax
addl %eax, %ecx
.
.
.

OS software
5. Pops saved EIP,ESP into

PCB1
6. Copies rest of registers into

PCB1
7. Sends instructions to disk

drive to fetch page

Process

1’s

memory

Registers

PCB3
PCB2
PCB1

OS’s
memory

Running

Running

Waiting

Process 1

29

Resuming Some Other Process
Hardware
12. Pops EIP,ESP into registers
13. Switches back to

unprivileged mode
14. Resumes where process 2

left off last time

Process

1’s

memory

Registers

PCB3
PCB2
PCB1

OS’s
memory

OS software
8. Sets process-ID register to 2
9. Pushes saved EIP,ESP from

PCB2 onto OS stack
10. Copies rest of registers from

PCB2
11. Executes “return from interrupt”

instruction

30

System call, just another kind of fault

Running

Running

Waiting

Process 1

mov $4,%eax
int $0x80
addl %eax, %ecx
.
.
.

system call
(privileged instruction)

PCB3
PCB2
PCB1

OS’s
memory

Process

1’s

memory

Registers

31

Summary
• Abstraction of a “process”
o CPU: a share of CPU resources on a small time scale
o Memory: a complete address space of your own

• OS support for the process abstraction
o CPU: context switch between processes
o Memory: virtual memory (VM) and page replacement
o Files: open/read/write, rather than “move disk head”
o Protection: ensure process access only its own resources

• Hardware support for the process abstraction
o Context switches, and push/pop registers on the stack
o Switch between privileged and unprivileged modes
o Map VM address and process ID to physical memory

