Representations 2

Prof. David August
COS 217

Today
• Unsigned Multiplication
• Fixed Point
• Floating Point

Multiplication
Computing Exact Product of w-bit numbers x, y

• Need 2w bits

Unsigned: \[0 \leq x \cdot y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1\]

Two’s Complement:
min: \[x \cdot y \geq (-2^{w-1})(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}\]
max: \[x \cdot y \leq (-2^{w-1})^2 = 2^{2w-2}\]

• Maintaining Exact Results
 ◦ Need unbounded representation size
 ◦ Done in software by arbitrary precision arithmetic packages
 ◦ Also implemented in Lisp, ML, and other languages
Unsigned Multiplication in C

• Standard Multiplication Function
 - Ignores high order w bits
• Implements Modular Arithmetic
 - $\text{UMult}_w(u, v) = u \cdot v \mod 2^w$

• What about unsigned integer division?

Unsigned Multiplication

Binary makes it easy:

• 0 => place 0 (0 x multiplicand)
• 1 => place a copy (1 x multiplicand)

Key sub-parts:

• Place a copy or not
• Shift copies appropriately
• Final addition
Representations

What can be represented in N bits?

Unsigned: $0 \rightarrow 2^{n-1}$

Signed: $-2^{n-1} \rightarrow 2^{n-1} - 1$

What about:

Very large numbers? 9,349,787,762,244,859,087,678

Very small numbers? 0.000000000000000000004691

Rationals? $\frac{2}{3}$

Irrationals? $\sqrt{2}$

Transcendentals? e, π

Interpretations

<table>
<thead>
<tr>
<th>Bit Pattern</th>
<th>Method 1</th>
<th>Method 2</th>
<th>Method 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>010</td>
<td>e</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>011</td>
<td>pi</td>
<td>4</td>
<td>0.3</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>8</td>
<td>0.4</td>
</tr>
<tr>
<td>101</td>
<td>-pi</td>
<td>16</td>
<td>0.5</td>
</tr>
<tr>
<td>110</td>
<td>-e</td>
<td>32</td>
<td>0.6</td>
</tr>
<tr>
<td>111</td>
<td>-1</td>
<td>64</td>
<td>0.7</td>
</tr>
</tbody>
</table>

What should we do? Another method?

The Binary Point

$101.11_{2} = 4 + 1 + \frac{1}{2} + \frac{1}{4} = 5.75$

Observations:

- Divide by 2 by shifting point left

- $0.111111\ldots_{2}$ is just below 1.0

- Some numbers cannot be exactly represented well

 $\frac{1}{10} \rightarrow 0.000110011001[0011]^\ldots_{2}$
Obvious Approach: Fixed Point

\[\sum_{k=-j}^{i} b_k \cdot 2^k \]

Fixed Point

In \(w \)-bits (\(w = i + j \)):
- use \(i \)-bits for left of binary point
- use \(j \)-bits for right of binary point

Qualities:
- Easy to understand
- Arithmetic relatively easy to implement
- Precision and Magnitude:
 - 16-bits, \(i=j=8 \): 0 \(\rightarrow \) 255.99609375
 - Step size: 0.00390625

Another Approach: Scientific Notation

- In Binary:
 - radix = 2
 - value = \((-1)^s \times M \times 2^E\)

- How is this better than fixed point?
IEEE 754 Floating Point

- Established in 1980 as uniform standard for floating point arithmetic
- Supported by all major CPUs
- In 99.999% of all machines used today

Driven by Numerical Concerns
- Standards for rounding, overflow, underflow
- Primarily numerical analysts rather than hardware types defined standard

This is where it gets a little involved…

IEEE 754 Floating Point Standard

- Single precision: 8 bit exponent, 23 bit significand
- Double precision: 11 bit exponent, 52 bit significand

- Significand M normally in range [1.0,2.0) \Rightarrow Imply 1
- Exponent E biased exponent \Rightarrow B is bias ($B = 2^{E_{-1}} - 1$)

$$N = (-1)^s \times 1.M \times 2^{E - B}$$

- Bias allows integer comparison (almost)!
 0000…0000 is most negative exponent
 1111…1111 is most positive exponent

IEEE 754 Floating Point Example

Define Wimpy Precision as:
- 1 sign bit, 4 bit exponent, 3 bit significand, $B = 7$

Represent: -0.75

$$s \quad E \quad M$$

7 6 3 2 0
IEEE 754 Floating Point
There’s more!

Normalized: $E \neq 000\ldots0$ and $E \neq 111\ldots1$

• Recall the implied $1.xxxxx$

Special Values: $E = 111\ldots1$

• $M = 000\ldots0$:
 ○ Represents $+/\infty$ (infinity)
 ○ Used in overflow
 ○ Examples: $1.0/0.0 = +\infty$, $1.0/-0.0 = -\infty$
 ○ Further computations with infinity possible
 ○ Example: $X/0 > Y$ may be a valid comparison

IEEE 754 Special Exponents

Normalized: $E \neq 000\ldots0$ and $E \neq 111\ldots1$

Special Values: $E = 111\ldots1$

• $M \neq 000\ldots0$:
 ○ Not-a-Number (NaN)
 ○ Represents invalid numeric value or operation
 ○ Not a number, but not infinity (e.g. $\sqrt{-4}$)
 ○ Examples: $\sqrt{-1}$, $\infty - \infty$
 ○ NaNs propagate: $f(\text{NaN}) = \text{NaN}$

IEEE 754 Special Exponents

Normalized: $E \neq 000\ldots0$ and $E \neq 111\ldots1$

• Recall the implied $1.xxxxx$

Denormalized: $E = 000\ldots0$

• $M = 000\ldots0$
 ○ Represents value 0
 ○ Note the distinct values +0 and −0
IEEE 754 Special Exponents

Normalized: $E \neq 000\ldots0$ and $E \neq 111\ldots1$

- Recall the implied $1.xxxxx$

Denormalized: $E = 000\ldots0$

- $M \neq 000\ldots0$
 - Numbers very close to 0.0
 - Lose precision as magnitude gets smaller
 - “Gradual underflow”

$$\begin{array}{ll}
\text{Exponent} & -\text{Bias} + 1 \\
\text{Significand} & 0.xxxxxx_2
\end{array}$$

Encoding Map

$$\begin{array}{cccc}
\text{NaN} & \text{NaN} & +\infty & -\infty \\
\hline
\text{Denorm} & \text{Denorm} & \text{Normalized} & \text{Normalized} \\
\hline
\end{array}$$

Dynamic Range

$$\begin{array}{cccccc}
S & E & M & \text{exp} & \text{value} & \\
\hline
\text{Denormalized} & 0 & 0000 & 000 & \text{n/a} & 0 \\
& 0 & 0000 & 001 & -6 & 1/512 \\
& 0 & 0000 & 010 & -6 & 2/512 \\
& \vdots & & & & \\
& 0 & 0000 & 110 & -6 & 6/512 \\
& 0 & 0000 & 111 & -6 & 7/512 \\
& 0 & 0001 & 000 & -6 & 8/512 \\
& 0 & 0001 & 001 & -6 & 9/512 \\
\text{Normalized} & 0 & 0110 & 110 & -1 & 28/32 \\
& 0 & 0110 & 111 & -1 & 30/32 \\
& 0 & 0111 & 000 & 0 & 1 \\
& 0 & 0111 & 001 & 0 & 36/32 \\
& 0 & 0111 & 010 & 0 & 40/32 \\
& \vdots & & & & \\
& 0 & 1110 & 110 & 7 & 224 \\
& 0 & 1110 & 111 & 7 & 240 \\
& 0 & 1111 & 000 & \text{n/a} & \text{inf} \\
\hline
\end{array}$$

- Closest to zero
- Largest denorm
- Smallest norm
- Closest to 1 below
- Closest to 1 above
- Largest norm
Define Wimpy Precision as:

1 sign bit, 4 bit exponent, 3 bit significand, $B = 7$

$E = 1-14$: Normalized
$E = 0$: Denormalized
$E = 15$: Infinity/ NaN