Today

• Unsigned Multiplication
• Fixed Point
• Floating Point

Multiplication

Computing Exact Product of w-bit numbers x, y

• Need 2w bits

Unsigned: \(0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1\)

Two's Complement:

min: \(x \times y \geq (-2^{w-1})(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}\)

max: \(x \times y \leq (-2^{w-1})^2 = 2^{2w-2}\)

• Maintaining Exact Results
 ◦ Need unbounded representation size
 ◦ Done in software by arbitrary precision arithmetic packages
 ◦ Also implemented in Lisp, ML, and other languages

Unsigned Multiplication in C

• Standard Multiplication Function
 ◦ Ignores high order w bits

• Implements Modular Arithmetic
 ◦ \(\text{UMult}_w(u, v) = u \times v \mod 2^w\)

• What about unsigned integer division?
Unsigned Multiplication

Binary makes it easy:
• 0 => place 0 (0 x multiplicand)
• 1 => place a copy (1 x multiplicand)

Key sub-parts:
• Place a copy or not
• Shift copies appropriately
• Final addition

Representations
What can be represented in N bits?
Unsigned: 0 \to 2^n - 1
Signed: -2^{n-1} \to 2^{n-1} - 1

What about:
Very large numbers? 9,349,787,762,244,859,087,678
Very small numbers? 0.0000000000000000000000004691
Rationals? 2/3
Irrationals? SQRT(2)
Transcendentals? e, PI

Interpretations

<table>
<thead>
<tr>
<th>Bit Pattern</th>
<th>Method 1</th>
<th>Method 2</th>
<th>Method 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>010</td>
<td>e</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>011</td>
<td>pi</td>
<td>4</td>
<td>0.3</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>8</td>
<td>0.4</td>
</tr>
<tr>
<td>101</td>
<td>-pi</td>
<td>16</td>
<td>0.5</td>
</tr>
<tr>
<td>110</td>
<td>-e</td>
<td>32</td>
<td>0.6</td>
</tr>
<tr>
<td>111</td>
<td>-1</td>
<td>64</td>
<td>0.7</td>
</tr>
</tbody>
</table>

What should we do? Another method?
The Binary Point

101.11₂ = 4 + 1 + ½ + ¼ = 5.75

Observations:
- Divide by 2 by shifting point left
- 0.111111…₂ is just below 1.0
- Some numbers cannot be exactly represented well
 1/10 \(\Rightarrow\) 0.0001100110011[0011]∗…₂

Obvious Approach: Fixed Point

\[\sum_{k=-j}^{i} b_k \cdot 2^k \]

Fixed Point

In w-bits (w = i + j):
- use i-bits for left of binary point
- use j-bits for right of binary point

Qualities:
- Easy to understand
- Arithmetic relatively easy to implement…
- Precision and Magnitude:
 16-bits, i=j=8: 0 \(\Rightarrow\) 255.99609375
 Step size: 0.00390625

Another Approach: Scientific Notation

\(6.02 \times 10^{23}\)

\(\text{Exponent Sign, magnitude} \rightarrow \text{radix (base)}\)

\(\text{Mantissa Sign, magnitude} \rightarrow \text{decimal point}\)

- In Binary:
 \(\text{radix} = 2\)
 \(\text{value} = (-1)^s \times M \times 2^E\)

- How is this better than fixed point?
IEEE 754 Floating Point

- Established in 1980 as uniform standard for floating point arithmetic
- Supported by all major CPUs
- In 99.999% of all machines used today

Driven by Numerical Concerns
- Standards for rounding, overflow, underflow
- Primarily numerical analysts rather than hardware types defined standard

This is where it gets a little involved…

IEEE 754 Floating Point Standard

- Single precision: 8 bit exponent, 23 bit significand
- Double precision: 11 bit exponent, 52 bit significand

- Significand M normally in range $[1.0, 2.0) \Rightarrow$ Imly 1
- Exponent E biased exponent $\Rightarrow B$ is bias $B = 2^{|E|} - 1$ $N = (-1)^s \times 1.M \times 2^{E-B}$

- Bias allows integer comparison (almost)!
 0000…0000 is most negative exponent
 1111…1111 is most positive exponent

IEEE 754 Floating Point Example

Define Wimpy Precision as:
- 1 sign bit, 4 bit exponent, 3 bit significand, $B = 7$

Represent: -0.75

IEEE 754 Floating Point

- Normalized: $E \neq 000…0$ and $E \neq 111…1$
- Recall the implied $1.xxxxx$

Special Values: $E = 111…1$
- $M = 000…0$:
 - Represents +/- ∞ (infinity)
 - Used in overflow
 - Examples: $1.0/0.0 = +\infty$, $1.0/-0.0 = -\infty$
 - Further computations with infinity possible
 - Example: $X/0 > Y$ may be a valid comparison
IEEE 754 Special Exponents

Normalized: $E \neq 000\ldots0$ and $E \neq 111\ldots1$

Special Values: $E = 111\ldots1$

• $M \neq 000\ldots0$:
 - Not-a-Number (NaN)
 - Represents invalid numeric value or operation
 - Not a number, but not infinity (e.g. $\sqrt{-4}$)
 - Examples: $\sqrt{-1}$, $\infty - \infty$
 - NaNs propagate: $f(NaN) = NaN$

• Recall the implied $1.xxxxx$

Denormalized: $E = 000\ldots0$

• $M \neq 000\ldots0$
 - Numbers very close to 0.0
 - Lose precision as magnitude gets smaller
 - “Gradual underflow”

Exponent $-Bias + 1$
Significand $0.xxxx\ldots x_2$

Encoding Map

Normalized: $E \neq 000\ldots0$ and $E \neq 111\ldots1$
• Recall the implied $1.xxxxx$

Denormalized: $E = 000\ldots0$
• $M = 000\ldots0$
 - Represents value 0
 - Note the distinct values +0 and −0
Dynamic Range

<table>
<thead>
<tr>
<th>S</th>
<th>E</th>
<th>M</th>
<th>exp</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>000</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>001</td>
<td>-6</td>
<td>1/512</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>010</td>
<td>-6</td>
<td>2/512</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>closest to zero</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>110</td>
<td>-6</td>
<td>6/512</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>111</td>
<td>-6</td>
<td>7/512</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>largest denorm</td>
</tr>
<tr>
<td>0</td>
<td>0001</td>
<td>000</td>
<td>-6</td>
<td>8/512</td>
</tr>
<tr>
<td>0</td>
<td>0001</td>
<td>001</td>
<td>-6</td>
<td>9/512</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>smallest norm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>closest to 1 below</td>
</tr>
<tr>
<td>0</td>
<td>0110</td>
<td>110</td>
<td>-1</td>
<td>28/32</td>
</tr>
<tr>
<td>0</td>
<td>0110</td>
<td>111</td>
<td>-1</td>
<td>30/32</td>
</tr>
<tr>
<td>0</td>
<td>0111</td>
<td>000</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0111</td>
<td>001</td>
<td>0</td>
<td>36/32</td>
</tr>
<tr>
<td>0</td>
<td>0111</td>
<td>010</td>
<td>0</td>
<td>40/32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>closest to 1 above</td>
</tr>
<tr>
<td>0</td>
<td>0110</td>
<td>110</td>
<td>7</td>
<td>224</td>
</tr>
<tr>
<td>0</td>
<td>0110</td>
<td>111</td>
<td>7</td>
<td>240</td>
</tr>
<tr>
<td>0</td>
<td>1111</td>
<td>000</td>
<td>n/a</td>
<td>inf</td>
</tr>
</tbody>
</table>

Wimpy Precision

Define Wimpy Precision as:

1 sign bit, 4 bit exponent, 3 bit significand, B = 7

<table>
<thead>
<tr>
<th>S</th>
<th>E</th>
<th>M</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Denormalized numbers

- E = 1-14: Normalized
- E = 0: Denormalized
- E = 15: Infinity/ NaN