Representations

Prof. David August
COS 217

Goals of Today’s Lecture

- **Representations**
 - Why binary?
 - Converting base 10 to base 2
 - Octal and hexadecimal

- **Integers**
 - Unsigned integers
 - Integer addition, subtraction
 - Signed integers

- **C bit operators**
 - And, or, not, and xor
 - Shift-left and shift-right
 - Function for counting the number of 1 bits
 - Function for XOR encryption of a message
3 Miles of Music

Pits and Lands

Transition represents a bit state (1/on/red/female/heads)
No change represents other state (0/off/white/male/tails)

Interpretation

As Music:
01110101₂ = 117/256 position of speaker

As Number:
01110101₂ = 1 + 4 + 16 + 32 + 64 = 117₁₀ = 75₁₆
(Get comfortable with base 2, 8, 10, and 16.)

As Text:
01110101₂ = 117th character in the ASCII codes = “u”
Interpretation – ASCII

Computer Science Building West Wall

Interpretation:

Code and Data (Hello World!)

- Programs consist of Code and Data
- Code and Data are Encoded in Bits

IA-64 Binary (objdump)
Interpretation:

Numbers

- **Base 10**
 - Each digit represents a power of 10
 - \(4173 = 4 \times 10^3 + 1 \times 10^2 + 7 \times 10^1 + 3 \times 10^0\)

- **Base 2**
 - Each bit represents a power of 2
 - \(10110 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 22\)

 Divide repeatedly by 2 and keep remainders

 \[
 \begin{align*}
 12/2 &= 6 \quad R = 0 \\
 6/2 &= 3 \quad R = 0 \\
 3/2 &= 1 \quad R = 1 \\
 1/2 &= 0 \quad R = 1
 \end{align*}
 \]

 Result = \(1100\)

Writing Bits is Tedious for People

- **Octal (base 8)**
 - Digits 0, 1, ..., 7
 - In C: 00, 01, ..., 07

- **Hexadecimal (base 16)**
 - Digits 0, 1, ..., 9, A, B, C, D, E, F
 - In C: 0x0, 0x1, ..., 0xf

<table>
<thead>
<tr>
<th>Octal</th>
<th>Hexadecimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Octal</th>
<th>Hexadecimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>A</td>
</tr>
<tr>
<td>1011</td>
<td>B</td>
</tr>
<tr>
<td>1100</td>
<td>C</td>
</tr>
<tr>
<td>1101</td>
<td>D</td>
</tr>
<tr>
<td>1110</td>
<td>E</td>
</tr>
<tr>
<td>1111</td>
<td>F</td>
</tr>
</tbody>
</table>

Thus the 16-bit binary number 1011 0010 1010 1001 converted to hex is B2A9

Interpretation:

Colors

- **Three primary colors**
 - Red
 - Green
 - Blue

- **Strength**
 - 8-bit number for each color (e.g., two hex digits)
 - So, 24 bits to specify a color

- **In HTML, on the course Web page**
 - Red: `Symbol Table Assignment Due</i>`
 - Blue: `Fall Recess</i>`

- **Same thing in digital cameras**
 - Each pixel is a mixture of red, green, and blue
Binary Representation of Integers

- Fixed number of bits in memory
 - char: 8 bits
 - short: usually 16 bits
 - int: 16 or 32 bits
 - long: 32 bits
 - long long: 64 bits

<table>
<thead>
<tr>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>101</td>
<td>5</td>
</tr>
<tr>
<td>110</td>
<td>6</td>
</tr>
<tr>
<td>111</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1(n)</td>
<td>2^{n-1}</td>
</tr>
</tbody>
</table>

- Unsigned integers
 - Always positive or 0
 - All arithmetic is modulo 2^n
 - unsigned char
 - unsigned short
 - unsigned int
 - unsigned long
 - unsigned long long

Size and Overflow in Unsigned Integers

<table>
<thead>
<tr>
<th>Bits</th>
<th>Integer Range</th>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0 - 255</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0 - 65,535</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>0 - 4,294,967,295</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>64</td>
<td>0 - 18,446,744,073,709,551,615</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1(n)</td>
<td>2^{n-1}</td>
</tr>
</tbody>
</table>

Number of bits determines unsigned integer range
Overflow:
- 8-bit integer \rightarrow 11111111$_2$ (255$_{10}$)
- Add 1
- What happens?

Adding Two Integers: Base 10

- From right to left, we add each pair of digits
- We write the sum, and add the carry to the next column
Binary Sums and Carries

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>Sum</th>
<th>a</th>
<th>b</th>
<th>Carry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

XOR AND

\[
\begin{array}{c}
0100 \\
+ 0110 \\
\hline
1010
\end{array} \quad \Rightarrow \quad 69
\]

\[
\begin{array}{c}
0101 \\
+ 0111 \\
\hline
1100
\end{array} \quad \Rightarrow \quad 103
\]

\[
\begin{array}{c}
1100 \\
\hline
1100
\end{array} \quad \Rightarrow \quad 172
\]

Overflow in Unsigned Addition

Operands: w bits

\[
u + v
\]

True Sum: w + 1 bits

\[
u + v
\]

Discard Carry: w bits

\[
\text{UAdd}_w(u,v)
\]

\[
\text{UAdd}_w(u,v) = \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases}
\]

Modulo Arithmetic: UAdd_w(u, v) = u + v mod 2^w

Detecting Unsigned Overflow

• Task:
 - Given s = UAdd_w(u, v)
 - Determine if s = u + v

• Claim:
 - Overflow iff s < u
 - ovf = (s < u)
 - By symmetry iff s < v

• Proof:
 - 0 \leq v < 2^w
 - No overflow \Rightarrow s = u + v \geq u + 0 = u
 - Overflow \Rightarrow s = u + v - 2^w < u + 0 = u
Modulo Arithmetic

- Consider only numbers in a range
 - E.g., five-digit car odometer: 0, 1, ..., 99999
 - E.g., eight-bit numbers 0, 1, ..., 255

- Roll-over when you run out of space
 - E.g., car odometer goes from 99999 to 0, 1, ...
 - E.g., eight-bit number goes from 255 to 0, 1, ...

- Adding 2^n doesn’t change the answer
 - For eight-bit number, n=8 and $2^n=256$
 - E.g., $(37 + 256) \mod 256$ is simply 37

- This can help us do subtraction…
 - Suppose you want to compute $a - b$
 - Note that this equals $a + (256 - 1 - b) + 1$

Modulo Addition Forms an Abelian Group

- Closed under addition
 - $0 \leq \text{UAdd}_w(u, v) \leq 2^w - 1$

- Commutative
 - $\text{UAdd}_w(u, v) = \text{UAdd}_w(v, u)$

- Associative
 - $\text{UAdd}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UAdd}_w(t, u), v)$

- 0 is additive identity
 - $\text{UAdd}_w(u, 0) = u$

- Every element has additive inverse
 - Let $\text{UComp}_w(u) = 2^w - u$
 - $\text{UAdd}_w(u, \text{UComp}_w(u)) = 0$
What about Negative Numbers?

- We have been looking at unsigned numbers
- What about negative or signed numbers?
- Need new interpretation of bits
- Some patterns interpreted as negative numbers

<table>
<thead>
<tr>
<th>Bits</th>
<th>Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>16</td>
<td>65,536</td>
</tr>
<tr>
<td>32</td>
<td>4,294,967,296</td>
</tr>
<tr>
<td>64</td>
<td>18,446,744,073,709,551,616</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Binary</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>(1^n)</td>
<td>(2^n)</td>
</tr>
</tbody>
</table>

Key Standard Pattern Assignments

- Which one is best?
 - Balance
 - Zeros
 - Ease of operations

<table>
<thead>
<tr>
<th>Bit Pattern</th>
<th>Sign Magnitude</th>
<th>One’s Complement</th>
<th>Two’s Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>+0</td>
<td>+0</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>010</td>
<td>+2</td>
<td>+2</td>
<td>+2</td>
</tr>
<tr>
<td>011</td>
<td>+3</td>
<td>+3</td>
<td>+3</td>
</tr>
<tr>
<td>100</td>
<td>-0</td>
<td>-3</td>
<td>-4</td>
</tr>
<tr>
<td>101</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>110</td>
<td>-2</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>111</td>
<td>-3</td>
<td>-0</td>
<td>-1</td>
</tr>
</tbody>
</table>

Most Common: Two’s Complement

- “Invert and Add 1” to negate
- Sign Bit
- Zeros, Range
- What about arithmetic?
Unsigned and Two’s Complement

- **Unsigned Values**
 \[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]
- **UMin = 0**
- **UMax = 2^w – 1**

- **Two’s Complement**
 \[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]
- **TMin = –2^{w-1}**
- **TMax = 2^{w-1} – 1**

Values for \(W = 16 \)

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF 11111111 11111111</td>
</tr>
<tr>
<td>Tmax</td>
<td>32767</td>
<td>7F FF 01111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>80 00 10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF 11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00 00000000 00000000</td>
</tr>
</tbody>
</table>

Representation Relationship

Sign Bit

Sizes and C Data Types

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>MIPS, x86</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>8 bits</td>
<td>8 bits</td>
</tr>
<tr>
<td>short</td>
<td>16 bits</td>
<td>16 bits</td>
</tr>
<tr>
<td>int</td>
<td>32 bits</td>
<td>32 bits</td>
</tr>
<tr>
<td>long int</td>
<td>32 bits</td>
<td>64 bits</td>
</tr>
</tbody>
</table>

char, short, int, long int
- Refer to number of bits of integer
- Most machines: signed two’s complement
 \texttt{unsigned <type>}
- Same number of bits as signed counterparts
- Unsigned integer
Sign Extension

char minusFour = -4;
short moreBits;
moreBits = (short) minusFour;

Given w bit signed integer, return equivalent w+k bit signed integer

Sign Extend:

Sign Extension
Proof of Correctness Outline

• Prove Correctness by Induction on k
• Induction Step: extending by single bit maintains value

Two’s Complement Addition

• TAdd and UAdd have identical Bit-Level Behavior!
Characterizing TAdd

• True sum requires w+1 bits
• Drop MSB

\[T_{\text{Add}}(u,v) = \begin{cases}
 u + v + 2^{w-1} & \text{if } u + v < \text{TMin}_w \text{ (NegOver)} \\
 u + v & \text{if } \text{TMin}_w \leq u + v \leq \text{TMax}_w \\
 u + v - 2^{w-1} & \text{if } \text{TMax}_w < u + v \text{ (PosOver)}
\end{cases} \]

Detecting Two’s Complement Overflow

• Task:
 - Given \(s = T_{\text{Add}}(u,v) \)
 - Determine if \(s = \text{Add}(u,v) \)

• Claim:
 - Overflow iff either:
 - \(u, v < 0, s \geq 0 \) (NegOver)
 - \(u, v \geq 0, s < 0 \) (PosOver)
 - \(\text{ovf} = (u<0 == v<0) \&\& (u<0 !\equiv s<0) \);

• Proof:
 - Obviously, if \(u \geq 0 \) and \(v < 0 \), then \(\text{TMin}_w \leq u + v \leq \text{TMax}_w \)
 - Symmetrically if \(u < 0 \) and \(v \geq 0 \)
 - Other cases from analysis of TAdd

Negation vs. Inversion

Inversion:
• A bit-wise operation
• Flip all 0’s to 1’s and vice versa: 0011 => 1100
• What does this do to the two’s complement value?

Negation:
• Two’s complement: invert all bits and add 1
• Example:
 \[3_{10} = 0011 \]
 \[\text{invert}(0011) + 1 \rightarrow 1100 + 1 \rightarrow 1101 \]
 \[1101 = -3_{10} \]
Two’s Complement Negation

- Mostly like Integer Negation
 - $T\text{Comp}(u) = -u$

- $T\text{Min}$ is Special Case
 - $T\text{Comp}(T\text{Min}) = T\text{Min}$
 - Note Also: $T\text{Comp}(0) = 0$

- Negation in C ($x = -x$;) is Actually $T\text{Comp}$

Comparing Two’s Complements

- Given signed numbers u, v
- Determine whether or not $u > v$
- Return true for shaded region:

 - Bad Approach:
 - Test $(u - v) > 0$
 - Problem: Thrown off by Overflow

Representation: A Collection of Bits

- Treat unsigned int as a collection 32 independent bits
- Good for tracking 32 individual binary conditions
 - True/False
 - Yes/No
 - Black/White

- Can also treat unsigned int as:
 - 16 2-bit values
 - 8 4-bit values
 - 4 8-bit values
 - 8 1-bit value, 4 2-bit values, 2 4-bit values, and 1 8-bit value
Bitwise Operators: AND and OR

- **Bitwise AND (&)**
 - Mod on the cheap!
 - E.g., \(h = 53 \& 15; \)

- **Bitwise OR (|)**

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

53 \[0\ 0\ 1\ 1\ 0\ 1\ 0\ 1\]

& 15 \[0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\]

5 \[0\ 0\ 0\ 0\ 1\ 0\ 1\]

Bitwise Operators: Not and XOR

- **One’s complement (~)**
 - Turns 0 to 1, and 1 to 0
 - E.g., set last three bits to 0
 - \(x = x \& \sim 7; \)

- **XOR (^)**
 - 0 if both bits are the same
 - 1 if the two bits are different

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Bitwise Operators: Shift Left/Right

- **Shift left (<<): Multiply by powers of 2**
 - Shift some # of bits to the left, filling the blanks with 0

53 \[0\ 0\ 1\ 1\ 0\ 1\ 0\ 0\]

53<<2 \[1\ 1\ 0\ 1\ 0\ 0\ 0\ 0\]

- **Shift right (>>): Divide by powers of 2**
 - Shift some # of bits to the right
 - For unsigned integer, fill in blanks with 0
 - What about signed integers? Varies across machines…
 - Can vary from one machine to another!

53 \[0\ 0\ 1\ 1\ 0\ 1\ 0\ 0\]

53>>2 \[0\ 0\ 0\ 0\ 1\ 1\ 0\ 1\]
Count Number of 1s in an Integer

- Function bitcount(unsigned x)
 - Input: unsigned integer
 - Output: number of bits set to 1 in the binary representation of x

- Main idea
 - Isolate the last bit and see if it is equal to 1
 - Shift to the right by one bit, and repeat

```c
int bitcount(unsigned int x) {
    int b;
    for (b = 0; x != 0; x >>= 1)
        if (x & 1)
            b++;
    return b;
}
```

XOR Encryption

- Program to encrypt text with a key
 - Input: original text in stdin
 - Output: encrypted text in stdout

- Use the same program to decrypt text with a key
 - Input: encrypted text in stdin
 - Output: original text in stdout

- Basic idea
 - Start with a key, some 8-bit number (e.g., 0110 0111)
 - Do an operation that can be inverted
 - E.g., XOR each character with the 8-bit number

 \[
 \begin{array}{c}
 0100 0101 \\
 ^ 0110 0111 \\
 \hline
 0010 0010
 \end{array}
 \quad
 \begin{array}{c}
 0010 0010 \\
 ^ 0110 0111 \\
 \hline
 0100 0101
 \end{array}
 \]

XOR Encryption, Continued

- But, we have a problem
 - Some characters are control characters
 - These characters don’t print

- So, let’s play it safe
 - If the encrypted character would be a control character
 - ... just print the original, unencrypted character
 - Note: the same thing will happen when decrypting, so we’re okay

- C function iscntrl()
 - Returns true if the character is a control character
XOR Encryption, C Code

```c
#define KEY '&'
int main(void) {
    int orig_char, new_char;

    while ((orig_char = getchar()) != EOF) {
        new_char = orig_char ^ KEY;
        if (iscntrl(new_char))
            putchar(orig_char);
        else
            putchar(new_char);
    }
    return 0;
}
```

Stupid Programmer Tricks

- Where do I use bitwise & most?
 - Bit vectors

- What's a bit vector?
 - Lots of booleans packed into an int/long
 - Often used to indicate some condition(s)
 - Less storage space than lots of fields
 - More explicit storage than compiled-defined bit fields

- Your compiler can do this?
```
typedef struct Blah {
    int b_onoff:1;
    int b_temperature:7;
    char b_someChar;
}...
```

Example From Real Code

```c
#define DONTCACHE_REQNOSTORE 0x000001
#define DONTCACHE_AUTHORIZED 0x000002
#define DONTCACHE_MISSINGVARIANTHDR 0x000004
#define DONTCACHE_USERORPASS 0x000008
#define DONTCACHE_BYPASSFILTER 0x000010
#define DONTCACHE_CTLPRIVATE 0x000040
#define DONTCACHE_CTLNOSTORE 0x000080
#define DONTCACHE_ISQUERY 0x000100
#define DONTCACHE_EARLYEXPIRE 0x000200
#define DONTCACHE_NOLASTMOD 0x000400
#define DONTCACHE_NONEGCACHING 0x000800
#define DONTCACHE_INSTANTEXPIRE 0x001000
#define DONTCACHE_FILETOOBIG 0x002000
#define DONTCACHE_ICPPROXYONLY 0x004000
#define DONTCACHE_LARGEFILEBLAST 0x008000
#define DONTCACHE_PERSISTLOGLOADING 0x010000
#define DONTCACHE_NEXTERCOPYEXISTS 0x020000
#define DONTCACHE_BADVARYFIELDS 0x040000
#define DONTCACHE_SETCOOKIE 0x080000
#define DONTCACHE_HTTPSTATUSCODE 0x100000
#define DONTCACHE_OBJECTINCOMPLETE 0x200000
```
Conclusions

• Computer represents everything in binary
 ◦ Integers, floating-point numbers, characters, addresses, …
 ◦ Pixels, sounds, colors, etc.

• Binary arithmetic through logic operations
 ◦ Sum (XOR) and Carry (AND)
 ◦ Two’s complement for subtraction

• Binary operations in C
 ◦ AND, OR, NOT, and XOR
 ◦ Shift left and shift right
 ◦ Useful for efficient and concise code, though sometimes cryptic