
1

Hash Tables

Prof. David August

COS 217

2

Goals of Today’s Lecture
• Motivation for hash tables

o Examples of (key, value) pairs
o Limitations of using arrays
o Example using a linked list
o Inefficiency of using a linked list

• Hash tables
o Hash table data structure
o Hash function
o Example hashing code
o Who owns the keys?

• Implementing “mod” efficiently
o Binary representation of numbers
o Logical bit operators

3

Accessing Data By a Key
• Student grades: (name, grade)

o E.g., (“john smith”, 84), (“jane doe”, 93), (“bill clinton”, 81)
o Gradeof(“john smith”) returns 84
o Gradeof(“joe schmoe”) returns NULL

• Wine inventory: (name, #bottles)
o E.g., (“tapestry”, 3), (“latour”, 12), (“margeaux”, 3)
o Bottlesof(“latour”) returns 12
o Bottlesof(“giesen”) returns NULL

• Years when a war started: (year, war)
o E.g., (1776, “Revolutionary”), (1861, “Civil War”), (1939, “WW2”)
o Warstarted(1939) returns “WW2”
o Warstarted(1984) returns NULL

• Symbol table: (variable name, variable value)
o E.g., (“MAXARRAY”, 2000), (“FOO”, 7), (“BAR”, -10)

4

Limitations of Using an Array
• Array stores n values indexed 0, …, n-1

o Index is an integer
o Max size must be known in advance

• But, the key in a (key, value) pair might not be a number
o Well, could convert it to a number

– E.g., have a separate number for each possible name

• But, we’d need an extremely large array
o Large number of possible keys (e.g., all names, all years, etc.)
o And, the number of unique keys might even be unknown
o And, most of the array elements would be empty

17
76

18
61

19
39

5

Could Use an Array of (key, value)
• Alternative way to use an array

o Array element i is a struct that stores key and value

• Managing the array
o Add an elements: add to the end
o Remove an element: find the element, and copy last element over it
o Find an element: search from the beginning of the array

• Problems
o Allocating too little memory: run out of space
o Allocating too much memory: wasteful of space

1776 Revolutionary
1861 Civil
1939 WW2

0
1
2

6

Linked List to Adapt Memory Size
• Each element is a struct

o Key
o Value
o Pointer to next element

• Linked list
o Pointer to the first element in the list
o Functions for adding and removing elements
o Function for searching for an element with a particular key

key
value
next

key
value
next

key
value
next

key
value
next

head

null

struct Entry {

int key;

char* value;

struct Entry *next;
};

7

Adding Element to a List
• Add new element at front of list

o Make ptr of new element point the current first element
– new->next = head;

o Make the head of the list point to the new element
– head = new;

key
value
next

key
value
next

key
value
next

head

null

key
value
next

new

8

Locating an Element in a List
• Sequence through the list by key value

o Return pointer to the element
o … or NULL if no element is found

for (p = head; p!=NULL; p=p->next) {

if (p->key == 1861)

return p;
}

return NULL;

1776
value
next

1861
value
next

1939
value
next

head

null

p p

9

Locate and Remove an Element (1)
• Sequence through the list by key value

o Keep track of the previous element in the list

prev = NULL;
for (p = head; p!=NULL; prev=p, p=p->next){

if (p->key == 1861) {

delete the element (see next slide!);
break;

}
}

1776
value
next

1861
value
next

1939
value
next

head

null

p pprev

10

Locate and Remove an Element (2)
• Delete the element

o Head element: make head point to the second element
o Non-head element: make previous Entry point to next element

if (p == head)

head = head->next;
else

prev->next = p->next;

1776
value
next

1861
value
next

1939
value
next

head

null

pprev

11

List is Not Good for (key, value)
• Good place to start

o Simple algorithm and data structure
o Good to allow early start on design and test of client code

• But, testing might show that this is not efficient enough
o Removing or locating an element

– Requires walking through the elements in the list
o Could store elements in sorted order

– But, keeping them in sorted order is time consuming
– And, searching by key in the sorted list still takes time

• Ultimately, we need a better approach
o Memory efficient: adds extra memory as needed
o Time efficient: finds element by its key instantly (or nearly)

12

Hash Table
• Fixed-size array where each element points to a linked list

• Function mapping each key to an array index
o For example, for an integer key h

– Hash function: i = h % TABLESIZE (mod function)
o Go to array element i, i.e., the linked list hashtab[i]

– Search for element, add element, remove element, etc.

0

TABLESIZE-1

struct Entry *hashtab[TABLESIZE];

13

Example
• Array of size 5 with hash function “h mod 5”
o “1776 % 5” is 1
o “1861 % 5” is 1
o “1939 % 5” is 4

1776
Revolution

1861
Civil

1939
WW2

0
1
2
3
4

14

How Large an Array?
• Large enough that average “bucket” size is 1

o Short buckets mean fast look-ups
o Long buckets mean slow look-ups

• Small enough to be memory efficient
o Not an excessive number of elements
o Fortunately, each array element is just storing a pointer

• This is OK:
0

TABLESIZE-1

15

What Kind of Hash Function?
• Good at distributing elements across the array

o Distribute results over the range 0, 1, …, TABLESIZE-1
o Distribute results evenly to avoid very long buckets

• This is not so good:

0

TABLESIZE-1

16

Hashing String Keys to Integers
• Simple schemes don’t distribute the keys evenly enough

o Number of characters, mod TABLESIZE
o Sum the ASCII values of all characters, mod TABLESIZE
o …

• Here’s a reasonably good hash function
o Weighted sum of characters xi in the string

– (Σ aixi) mod TABLESIZE
o Best if a and TABLESIZE are relatively prime

– E.g., a = 65599, TABLESIZE = 1024

17

Implementing Hash Function
• Potentially expensive to compute ai for each value of i

o Computing ai for each value of I
o Instead, do (((x[0] * 65599 + x[1]) * 65599 + x[2]) * 65599 + x[3]) * …

unsigned hash(char *x) {

int i; unsigned int h = 0;

for (i=0; x[i]; i++)

h = h * 65599 + x[i];

return (h % 1024);

}

Can be more clever than this for powers of two!

18

Hash Table Example
Example: TABLESIZE = 7

Lookup (and enter, if not present) these strings: the, cat, in, the, hat

Hash table initially empty.

First word: the. hash(“the”) = 965156977. 965156977 % 7 = 1.

Search the linked list table[1] for the string “the”; not found.

0
1
2
3
4
5
6

19

Hash Table Example
Example: TABLESIZE = 7

Lookup (and enter, if not present) these strings: the, cat, in, the, hat

Hash table initially empty.

First word: “the”. hash(“the”) = 965156977. 965156977 % 7 = 1.

Search the linked list table[1] for the string “the”; not found

Now: table[1] = makelink(key, value, table[1])

0
1
2
3
4
5
6

the

20

Hash Table Example
Second word: “cat”. hash(“cat”) = 3895848756. 3895848756 % 7 = 2.

Search the linked list table[2] for the string “cat”; not found

Now: table[2] = makelink(key, value, table[2])

0
1
2
3
4
5
6

the

21

Hash Table Example
Third word: “in”. hash(“in”) = 6888005. 6888005% 7 = 5.

Search the linked list table[5] for the string “in”; not found

Now: table[5] = makelink(key, value, table[5])

0
1
2
3
4
5
6

the

cat

22

Hash Table Example
Fourth word: “the”. hash(“the”) = 965156977. 965156977 % 7 = 1.

Search the linked list table[1] for the string “the”; found it!

0
1
2
3
4
5
6

the

cat

in

23

Hash Table Example
Fourth word: “hat”. hash(“hat”) = 865559739. 865559739 % 7 = 2.

Search the linked list table[2] for the string “hat”; not found.

Now, insert “hat” into the linked list table[2].

At beginning or end? Doesn’t matter.

0
1
2
3
4
5
6

the

cat

in

24

Hash Table Example
Inserting at the front is easier, so add “hat” at the front

0
1
2
3
4
5
6

the

hat

in

cat

25

Example Hash Table C Code
• Element in the hash table

• Hash table
o struct Nlist *hashtab[1024];

• Three functions
o Hash function: unsigned hash(char *x)
o Look up with key: struct Nlist *lookup(char *s)
o Install entry: struct Nlist *install(char *key, *value)

struct Nlist {

struct Nlist *next;

char *key;

char *value;
};

26

Lookup Function

struct Nlist *lookup(char *s) {

struct Nlist *p;

for (p = hashtab[hash(s)]; p!=NULL; p=p->next)
if (strcmp(s, p->key) == 0)

return p; /* found */

return NULL; /* not found */

}

• Lookup based on key
o Key is a string *s
o Return pointer to matching hash-table element
o … or return NULL if no match is found

27

Install an Entry (1)
• Install and (key, value) pair

o Add new Entry if none exists, or overwrite the old value
o Return a pointer to the Entry

struct Nlist *install(char *key, char *value) {

struct Nlist *p;

if ((p = lookup(name)) == NULL) { /* not found */
create and add new Entry (see next slide);

} else /* already there, so discard old value */

free(p->value);

p->value = malloc(strlen(value) + 1);

assert(p->value != NULL);

strcpy(p->value, value);

return p;
}

28

Install an Entry (2)
• Create and install a new Entry

o Allocate memory for the new struct and the key
o Insert into the appropriate linked list in the hash table

p = malloc(sizeof(*p));
assert(p != NULL);
p->key = malloc(strlen(key) + 1);
assert(p->key != NULL);
strcpy(p->key, key);

/* add to front of linked list */
unsigned hashval = hash(key);
p->next = hashtab[hashval]
hashtab[hashval] = p;

29

Why Bother Copying the Key?
• In the example, why did I do

p->key = malloc(strlen(key) + 1);

strcpy(p->key, key);

• Instead of simply

p->key = key;

• After all, the client passed me key, which is a pointer
o So, storage for the key has already been allocated
o Don’t I simply need to copy the address where the string is stored?

• I want to preserve the integrity of the hash table
o Even if the client program ultimately “frees” the memory for key
o So, the install function makes a copy of the key

• The hash table owns the key
o … because it is part of the data structure

30

Revisiting Hash Functions
• Potentially expensive to compute “mod c”

o Involves division by c and keeping the remainder
o Easier when c is a power of 2 (e.g., 16 = 24)

• Binary (base 2) representation of numbers
o E.g., 53 = 32 + 16 + 4 + 1

o E.g., 53 % 16 is 5, the last four bits of the number

o Would like an easy way to isolate the last four bits…

0 0 1 1 0 1 0 1
12481632

0 0 0 0 0 1 0 1
12481632

31

Bitwise Operators in C
• Bitwise AND (&)

o Mod on the cheap!
– E.g., h = 53 & 15;

• Bitwise OR (|)

&
0

1

0 1
0 0

0 1

|

0

1

0 1
0 1

1 1

0 0 1 1 0 1 0 1

0 0 0 0 1 1 1 1

53

& 15

0 0 0 0 0 1 0 1

• One’s complement (~)
o Turns 0 to 1, and 1 to 0
o E.g., set last three bits to 0

– x = x & ~7;

5

32

Bitwise Operators in C (Continued)
• Shift left (<<)

o Shift some # of bits to the left, filling the blanks with 0
o E.g., n << 2 shifts left by 2 bits

– So, if n is 1012 (i.e., 510), then n<<2 is 101002 (ie., 2010)
o Multiplication by powers of two on the cheap!

• Shift right (>>)
o Shift some # of bits to the right

– For unsigned integer, fill in blanks with 0
– What about signed integers?

• Can vary from one machine to another!
o E.g., n>>2 shifts right by 2 bits

– So, if n is 101102 (i.e., 2210), then n>>2 is 1012 (ie., 510)
o Division by powers of two (dropping remainder) on the cheap!

33

Stupid Programmer Tricks
• Confusing (val % 1024) with (val & 1024)

o Drops from 1024 bins to two useful bins
o You really wanted (val & 1023)

• Speeding up compare
o For any non-trivial value comparison function
o Trick: store full hash result in structure
struct Nlist *lookup(char *s) {

struct Nlist *p;

int val = hash(s); /* no % in hash function */

for (p = hashtab[val%1024]; p!=NULL; p=p->next)
if (p->hash == val && strcmp(s, p->key) == 0)

return p;

return NULL;

}

34

Summary of Today’s Lecture
• Linked lists

o A list is always the size it needs to be to store its contents
– Useful when the number of items may change frequently!

o A list can be rearranged simply by manipulating pointers
– When items are added/deleted, other items aren’t moved
– Useful when items are large and, hence, expensive to move!

• Hash tables
o Invaluable for storing (key, value) pairs
o Very efficient lookups

– If the hash function is good and the table size is large enough

• Bit-wise operators in C
o AND (&) and OR (|) – note: they are different from && and ||
o One’s complement (~) to flip all bits
o Left shift (<<) and right shift (>>) by some number of bits

	Hash Tables
	Goals of Today’s Lecture
	Accessing Data By a Key
	Limitations of Using an Array
	Could Use an Array of (key, value)
	Linked List to Adapt Memory Size
	Adding Element to a List
	Locating an Element in a List
	Locate and Remove an Element (1)
	Locate and Remove an Element (2)
	List is Not Good for (key, value)
	Hash Table
	Example
	How Large an Array?
	What Kind of Hash Function?
	Hashing String Keys to Integers
	Implementing Hash Function
	Hash Table Example
	Hash Table Example
	Hash Table Example
	Hash Table Example
	Hash Table Example
	Hash Table Example
	Hash Table Example
	Example Hash Table C Code
	Lookup Function
	Install an Entry (1)
	Install an Entry (2)
	Why Bother Copying the Key?
	Revisiting Hash Functions
	Bitwise Operators in C
	Bitwise Operators in C (Continued)
	Stupid Programmer Tricks
	Summary of Today’s Lecture

