
1

Hash Tables

Prof. David August

COS 217

2

Goals of Today’s Lecture
• Motivation for hash tables

o Examples of (key, value) pairs
o Limitations of using arrays
o Example using a linked list
o Inefficiency of using a linked list

• Hash tables
o Hash table data structure
o Hash function
o Example hashing code
o Who owns the keys?

• Implementing “mod” efficiently
o Binary representation of numbers
o Logical bit operators

3

Accessing Data By a Key
• Student grades: (name, grade)

o E.g., (“john smith”, 84), (“jane doe”, 93), (“bill clinton”, 81)
o Gradeof(“john smith”) returns 84
o Gradeof(“joe schmoe”) returns NULL

• Wine inventory: (name, #bottles)
o E.g., (“tapestry”, 3), (“latour”, 12), (“margeaux”, 3)
o Bottlesof(“latour”) returns 12
o Bottlesof(“giesen”) returns NULL

• Years when a war started: (year, war)
o E.g., (1776, “Revolutionary”), (1861, “Civil War”), (1939, “WW2”)
o Warstarted(1939) returns “WW2”
o Warstarted(1984) returns NULL

• Symbol table: (variable name, variable value)
o E.g., (“MAXARRAY”, 2000), (“FOO”, 7), (“BAR”, -10)

4

Limitations of Using an Array
• Array stores n values indexed 0, …, n-1

o Index is an integer
o Max size must be known in advance

• But, the key in a (key, value) pair might not be a number
o Well, could convert it to a number

– E.g., have a separate number for each possible name

• But, we’d need an extremely large array
o Large number of possible keys (e.g., all names, all years, etc.)
o And, the number of unique keys might even be unknown
o And, most of the array elements would be empty

17
76

18
61

19
39

5

Could Use an Array of (key, value)
• Alternative way to use an array

o Array element i is a struct that stores key and value

• Managing the array
o Add an elements: add to the end
o Remove an element: find the element, and copy last element over it
o Find an element: search from the beginning of the array

• Problems
o Allocating too little memory: run out of space
o Allocating too much memory: wasteful of space

1776 Revolutionary
1861 Civil
1939 WW2

0
1
2

6

Linked List to Adapt Memory Size
• Each element is a struct

o Key
o Value
o Pointer to next element

• Linked list
o Pointer to the first element in the list
o Functions for adding and removing elements
o Function for searching for an element with a particular key

key
value
next

key
value
next

key
value
next

key
value
next

head

null

struct Entry {

int key;

char* value;

struct Entry *next;
};

7

Adding Element to a List
• Add new element at front of list

o Make ptr of new element point the current first element
– new->next = head;

o Make the head of the list point to the new element
– head = new;

key
value
next

key
value
next

key
value
next

head

null

key
value
next

new

8

Locating an Element in a List
• Sequence through the list by key value

o Return pointer to the element
o … or NULL if no element is found

for (p = head; p!=NULL; p=p->next) {

if (p->key == 1861)

return p;
}

return NULL;

1776
value
next

1861
value
next

1939
value
next

head

null

p p

9

Locate and Remove an Element (1)
• Sequence through the list by key value

o Keep track of the previous element in the list

prev = NULL;
for (p = head; p!=NULL; prev=p, p=p->next){

if (p->key == 1861) {

delete the element (see next slide!);
break;

}
}

1776
value
next

1861
value
next

1939
value
next

head

null

p pprev

10

Locate and Remove an Element (2)
• Delete the element

o Head element: make head point to the second element
o Non-head element: make previous Entry point to next element

if (p == head)

head = head->next;
else

prev->next = p->next;

1776
value
next

1861
value
next

1939
value
next

head

null

pprev

11

List is Not Good for (key, value)
• Good place to start

o Simple algorithm and data structure
o Good to allow early start on design and test of client code

• But, testing might show that this is not efficient enough
o Removing or locating an element

– Requires walking through the elements in the list
o Could store elements in sorted order

– But, keeping them in sorted order is time consuming
– And, searching by key in the sorted list still takes time

• Ultimately, we need a better approach
o Memory efficient: adds extra memory as needed
o Time efficient: finds element by its key instantly (or nearly)

12

Hash Table
• Fixed-size array where each element points to a linked list

• Function mapping each key to an array index
o For example, for an integer key h

– Hash function: i = h % TABLESIZE (mod function)
o Go to array element i, i.e., the linked list hashtab[i]

– Search for element, add element, remove element, etc.

0

TABLESIZE-1

struct Entry *hashtab[TABLESIZE];

13

Example
• Array of size 5 with hash function “h mod 5”
o “1776 % 5” is 1
o “1861 % 5” is 1
o “1939 % 5” is 4

1776
Revolution

1861
Civil

1939
WW2

0
1
2
3
4

14

How Large an Array?
• Large enough that average “bucket” size is 1

o Short buckets mean fast look-ups
o Long buckets mean slow look-ups

• Small enough to be memory efficient
o Not an excessive number of elements
o Fortunately, each array element is just storing a pointer

• This is OK:
0

TABLESIZE-1

15

What Kind of Hash Function?
• Good at distributing elements across the array

o Distribute results over the range 0, 1, …, TABLESIZE-1
o Distribute results evenly to avoid very long buckets

• This is not so good:

0

TABLESIZE-1

16

Hashing String Keys to Integers
• Simple schemes don’t distribute the keys evenly enough

o Number of characters, mod TABLESIZE
o Sum the ASCII values of all characters, mod TABLESIZE
o …

• Here’s a reasonably good hash function
o Weighted sum of characters xi in the string

– (Σ aixi) mod TABLESIZE
o Best if a and TABLESIZE are relatively prime

– E.g., a = 65599, TABLESIZE = 1024

17

Implementing Hash Function
• Potentially expensive to compute ai for each value of i

o Computing ai for each value of I
o Instead, do (((x[0] * 65599 + x[1]) * 65599 + x[2]) * 65599 + x[3]) * …

unsigned hash(char *x) {

int i; unsigned int h = 0;

for (i=0; x[i]; i++)

h = h * 65599 + x[i];

return (h % 1024);

}

Can be more clever than this for powers of two!

18

Hash Table Example
Example: TABLESIZE = 7

Lookup (and enter, if not present) these strings: the, cat, in, the, hat

Hash table initially empty.

First word: the. hash(“the”) = 965156977. 965156977 % 7 = 1.

Search the linked list table[1] for the string “the”; not found.

0
1
2
3
4
5
6

19

Hash Table Example
Example: TABLESIZE = 7

Lookup (and enter, if not present) these strings: the, cat, in, the, hat

Hash table initially empty.

First word: “the”. hash(“the”) = 965156977. 965156977 % 7 = 1.

Search the linked list table[1] for the string “the”; not found

Now: table[1] = makelink(key, value, table[1])

0
1
2
3
4
5
6

the

20

Hash Table Example
Second word: “cat”. hash(“cat”) = 3895848756. 3895848756 % 7 = 2.

Search the linked list table[2] for the string “cat”; not found

Now: table[2] = makelink(key, value, table[2])

0
1
2
3
4
5
6

the

21

Hash Table Example
Third word: “in”. hash(“in”) = 6888005. 6888005% 7 = 5.

Search the linked list table[5] for the string “in”; not found

Now: table[5] = makelink(key, value, table[5])

0
1
2
3
4
5
6

the

cat

22

Hash Table Example
Fourth word: “the”. hash(“the”) = 965156977. 965156977 % 7 = 1.

Search the linked list table[1] for the string “the”; found it!

0
1
2
3
4
5
6

the

cat

in

23

Hash Table Example
Fourth word: “hat”. hash(“hat”) = 865559739. 865559739 % 7 = 2.

Search the linked list table[2] for the string “hat”; not found.

Now, insert “hat” into the linked list table[2].

At beginning or end? Doesn’t matter.

0
1
2
3
4
5
6

the

cat

in

24

Hash Table Example
Inserting at the front is easier, so add “hat” at the front

0
1
2
3
4
5
6

the

hat

in

cat

25

Example Hash Table C Code
• Element in the hash table

• Hash table
o struct Nlist *hashtab[1024];

• Three functions
o Hash function: unsigned hash(char *x)
o Look up with key: struct Nlist *lookup(char *s)
o Install entry: struct Nlist *install(char *key, *value)

struct Nlist {

struct Nlist *next;

char *key;

char *value;
};

26

Lookup Function

struct Nlist *lookup(char *s) {

struct Nlist *p;

for (p = hashtab[hash(s)]; p!=NULL; p=p->next)
if (strcmp(s, p->key) == 0)

return p; /* found */

return NULL; /* not found */

}

• Lookup based on key
o Key is a string *s
o Return pointer to matching hash-table element
o … or return NULL if no match is found

27

Install an Entry (1)
• Install and (key, value) pair

o Add new Entry if none exists, or overwrite the old value
o Return a pointer to the Entry

struct Nlist *install(char *key, char *value) {

struct Nlist *p;

if ((p = lookup(name)) == NULL) { /* not found */
create and add new Entry (see next slide);

} else /* already there, so discard old value */

free(p->value);

p->value = malloc(strlen(value) + 1);

assert(p->value != NULL);

strcpy(p->value, value);

return p;
}

28

Install an Entry (2)
• Create and install a new Entry

o Allocate memory for the new struct and the key
o Insert into the appropriate linked list in the hash table

p = malloc(sizeof(*p));
assert(p != NULL);
p->key = malloc(strlen(key) + 1);
assert(p->key != NULL);
strcpy(p->key, key);

/* add to front of linked list */
unsigned hashval = hash(key);
p->next = hashtab[hashval]
hashtab[hashval] = p;

29

Why Bother Copying the Key?
• In the example, why did I do

p->key = malloc(strlen(key) + 1);

strcpy(p->key, key);

• Instead of simply

p->key = key;

• After all, the client passed me key, which is a pointer
o So, storage for the key has already been allocated
o Don’t I simply need to copy the address where the string is stored?

• I want to preserve the integrity of the hash table
o Even if the client program ultimately “frees” the memory for key
o So, the install function makes a copy of the key

• The hash table owns the key
o … because it is part of the data structure

30

Revisiting Hash Functions
• Potentially expensive to compute “mod c”

o Involves division by c and keeping the remainder
o Easier when c is a power of 2 (e.g., 16 = 24)

• Binary (base 2) representation of numbers
o E.g., 53 = 32 + 16 + 4 + 1

o E.g., 53 % 16 is 5, the last four bits of the number

o Would like an easy way to isolate the last four bits…

0 0 1 1 0 1 0 1
12481632

0 0 0 0 0 1 0 1
12481632

31

Bitwise Operators in C
• Bitwise AND (&)

o Mod on the cheap!
– E.g., h = 53 & 15;

• Bitwise OR (|)

&
0

1

0 1
0 0

0 1

|

0

1

0 1
0 1

1 1

0 0 1 1 0 1 0 1

0 0 0 0 1 1 1 1

53

& 15

0 0 0 0 0 1 0 1

• One’s complement (~)
o Turns 0 to 1, and 1 to 0
o E.g., set last three bits to 0

– x = x & ~7;

5

32

Bitwise Operators in C (Continued)
• Shift left (<<)

o Shift some # of bits to the left, filling the blanks with 0
o E.g., n << 2 shifts left by 2 bits

– So, if n is 1012 (i.e., 510), then n<<2 is 101002 (ie., 2010)
o Multiplication by powers of two on the cheap!

• Shift right (>>)
o Shift some # of bits to the right

– For unsigned integer, fill in blanks with 0
– What about signed integers?

• Can vary from one machine to another!
o E.g., n>>2 shifts right by 2 bits

– So, if n is 101102 (i.e., 2210), then n>>2 is 1012 (ie., 510)
o Division by powers of two (dropping remainder) on the cheap!

33

Stupid Programmer Tricks
• Confusing (val % 1024) with (val & 1024)

o Drops from 1024 bins to two useful bins
o You really wanted (val & 1023)

• Speeding up compare
o For any non-trivial value comparison function
o Trick: store full hash result in structure
struct Nlist *lookup(char *s) {

struct Nlist *p;

int val = hash(s); /* no % in hash function */

for (p = hashtab[val%1024]; p!=NULL; p=p->next)
if (p->hash == val && strcmp(s, p->key) == 0)

return p;

return NULL;

}

34

Summary of Today’s Lecture
• Linked lists

o A list is always the size it needs to be to store its contents
– Useful when the number of items may change frequently!

o A list can be rearranged simply by manipulating pointers
– When items are added/deleted, other items aren’t moved
– Useful when items are large and, hence, expensive to move!

• Hash tables
o Invaluable for storing (key, value) pairs
o Very efficient lookups

– If the hash function is good and the table size is large enough

• Bit-wise operators in C
o AND (&) and OR (|) – note: they are different from && and ||
o One’s complement (~) to flip all bits
o Left shift (<<) and right shift (>>) by some number of bits

