
1

COS 217: Introduction to
Programming Systems

Fall 2007 (TTh 10:00-10:50 in CS 104)

Prof. David I. August

Preceptors: Bob Dondero (lead),
Anirudh Badam, Lindsey Poole, Arun Raman

http://www.cs.princeton.edu/courses/archive/fall07/cos217/

2

Goals for Today’s Class
• COS 217 overview

– Goals of the course
– Introductions
– Learning the material
– Course grading
– Academic policies

• Getting started
– Modularity/Interfaces/Abstraction
– C Programming: How C differs from Java
– Getting input and providing output

http://www.cs.princeton.edu/courses/archive/fall07/cos217/

3

Goals of COS 217
• Understand boundary between code and computer

– Machine architecture
– Operating systems
– Compilers

• Learn C and the Unix development tools
– C is widely used for programming low-level systems
– Unix has a rich development environment
– Unix is open and well-specified, good for study & research

• Improve your programming skills
– More experience in programming
– Challenging and interesting programming assignments
– Emphasis on modularity and debugging

4

Introductions
• David August (professor)

– Room 209 in Computer Science Building
– august@cs.princeton.edu

• Bob Dondero (lead preceptor)
– Room 206 in Computer Science Building
– rdondero@cs.princeton.edu

• Anirudh Badam, Lindsey Poole, and Arun Raman
– See web site for contact info

• Donna O’Leary (administrator)
– Room 410 in Computer Science Building
– doleary@cs.princeton.edu

mailto:august@cs.princeton.edu
mailto:rdondero@cs.princeton.edu
mailto:doleary@cs.princeton.edu

5

Learning the Material: Tuning In
• Lecture

– Goal: Introduce concepts and work through examples
– When: TTh 10:00-10:50 in CS 104
– Slides available online at course Web site

• Precept
– Goal: Demonstrate tools and work through programming examples

• Website - get there from: http://www.cs.princeton.edu

• Mailing List at cos217@lists.cs.princeton.edu

6

Learning the Material: Books
• Required textbooks

– C Programming: A Modern Approach, King, 1996.
– The Practice of Programming, Kernighan and Pike, 1999.
– ONE OF:

• Online -- Programming from the Ground Up, Bartlett, 2004.
• Preferred -- Computer Systems: A Programmer's Perspective, Randal

E. Bryant and David R. O'Hallaron, Prentice-Hall 2003.

• Highly recommended
– Programming with GNU Software, Loukides and Oram, 1997.

• Optional (available online)
– IA32 Intel Architecture Software Developer's Manual, Volumes 1-3
– Tool Interface Standard & Executable and Linking Format
– Using as, the GNU Assembler

• Other textbooks (on reserve in the Engineering Library)
– The C Programming Language (2nd edition), Kernighan and Ritchie, 1988.
– C: A Reference Manual, Harbison and Steele, 2002.
– C Interfaces and Implementations, Hanson, 1996.

7

Learning the Material: Doing
1. A “de-comment” program

2. A string module

3. A symbol table abstract data type (ADT)

4. A heap manager

5. UNIX commands in AI-32 assembly language

6. A buffer overrun attack

7. ???

8

Facilities for Programming
• Recommended options: OIT “hats” LINUX cluster

– Friend Center 016 or 017 computer, secure shell to “hats”, or
– Your own PC, secure shell to “hats.princeton.edu” (Linux)
– Why: common environment, and access to lab TAs

• Other option: on your own PC (not recommended;
reasonable only for some parts of some assignments):
– Running GNU tools on Linux, or
– Running GNU tools on Windows, or
– Running a standard C development environment

• Assignments are due Sundays (typically) at 9:00PM

• Advice: start early, to allow time for debugging (especially
in the background while you are doing other things!)…

9

Why Debugging is Necessary…

10

Software in COS126

Specification

Design

Programming

Debugging

Testing

1 Person
102 Lines of Code
1 Type of Machine
0 Spec Modifications
1 Week

1 Person
102 Lines of Code
1 Type of Machine
0 Spec Modifications
1 Week

11

Software in the Real World

Specification

Design

Programming

Debugging

Testing

Lots of People
106 Lines of Code
Lots of Machines
Lots of Spec Modifications
1 Decade or more

Lots of People
106 Lines of Code
Lots of Machines
Lots of Spec Modifications
1 Decade or more

12

Grading
• Seven programming assignments (60%)

– Working code
– Clean, readable, maintainable code
– On time (penalties for late submission)

• Exams (30%)
– Midterm
– Final

• Class participation (10%)
– Precept attendance is mandatory

13

Policies
www.cs.princeton.edu/courses/archive/fall07/cos217/policies.html

Programming in an individual creative process much like composition.
You must reach your own understanding of the problem and discover a
path to its solution. During this time, discussions with friends are
encouraged. However, when the time comes to write code that solves
the problem, such discussions are no longer appropriate - the program
must be your own work. If you have a question about how to use some
feature of C, UNIX, etc., you can certainly ask your friends or the
teaching assistants, but do not, under any circumstances, copy
another person's program. Letting someone copy your program or
using someone else's code in any form is a violation of academic
regulations. "Using someone else's code" includes using solutions or
partial solutions to assignments provided by commercial web sites,
instructors, preceptors, teaching assistants, friends, or students from
any previous offering of this course or any other course.

http://www.cs.princeton.edu/courses/archive/fall07/cos217/policies.html

14

Any questions before we start?

15

Intuition:
Modularity/Abstraction/Interfaces

Client Interface
- universal remote
- volume
- change channel
- adjust picture
- decode NTSC, PAL
signals

Implementation
- cathode ray tube
- electron gun
- Sony Wega 36XBR250
- 241 pounds, $2,699

16

Intuition:
Modularity/Abstraction/Interfaces

Client Interface
- universal remote
- volume
- change channel
- adjust picture
- decode NTSC, PAL
signals

Implementation
- gas plasma monitor
- Pioneer PDP-502MX
- wall mountable
- 4 inches deep
- $19,995

Can substitute better implementation without changing client!

17

Good Software is Modularized
• Understandable

– Well-designed
– Consistent
– Documented

• Robust
– Works for any input
– Tested

• Reusable
– Components

• Efficient
– Only matters for 1%

Write code in modules
with well-defined interfaces

Write code in modules
with well-defined interfaces

Write code in modules
and test them separately
Write code in modules

and test them separately

Write code in modules
that can be used elsewhere

Write code in modules
that can be used elsewhere

Write code in modules
and optimize the slow ones

Write code in modules
and optimize the slow ones

System Interfaces/Abstraction

Instruction Set Architecture

Applications

Operating System

FirmwareCompiler

Instruction Set Processor I/O System

Datapath & Control

Digital Design

Circuit Design

Layout

Software

Hardware

Figure Source H&P

More than 99.5% of Linux OS code goes through a compiler…
Almost 100% of application code…

19

The C Programming Language
• “C has always been a language that never attempts to tie a

programmer down.”

• “C has always appealed to systems programmers who like
the terse, concise manner in which powerful expressions
can be coded.”

• “C allowed programmers to (while sacrificing portability)
have direct access to many machine-level features that
would otherwise require the use of Assembly Language.”

• “C is quirky, flawed, and an enormous success. While
accidents of history surely helped, it evidently satisfied a
need for a system implementation language efficient
enough to displace assembly language, yet sufficiently
abstract and fluent to describe algorithms and interactions
in a wide variety of environments.” – Dennis Ritchie

20

The C Programming Language
• Systems programming language

– Originally used to write Unix and Unix tools
– Data types and control structures close to most machines
– Now also a popular application programming language

• Pros and cons
– Can do whatever you want: flexible and efficient
– Can do whatever you want: can shoot yourself in the foot

• Notable features
– All functions are call-by-value
– Pointer (address) arithmetic
– Simple scope structure
– I/O and memory management facilities provided by libraries

• History
– BCPL B C K&R C ANSI C

1960 1970 1972 1978 1988
– LISP Smalltalk C++ Java

21

Java vs. C
• Abstraction

– C exposes the raw machine
– Java hides a lot of it

• Bad things you can do in C that you can’t do in Java
– Shoot yourself in the foot (safety)
– Others shoot you in the foot (security)
– Ignoring wounds (error handling)

• Dangerous things you must do in C that you don’t in Java
– Memory management (i.e., malloc and free)

• Good things that you can do in C, but Java makes you
– Objected-oriented methodology

• Good things that you can’t do in C but you can in Java
– Portability

22

Java vs. C
Java C

Program

Compile

Run

hello.java:

public class hello {
public static void

main(String[] args) {
System.out.println(
“Hello, world”);

}
}

hello.c:

#include <stdio.h>

int main(void) {
printf(“Hello, world\n”);
return 0;

}

% javac hello.java
% ls
hello.java hello.class
%

% gcc hello.c
% ls
a.out hello.c
%

% java hello
Hello, world
%

% a.out
Hello, world
%

23

Java vs. C, cont’d
Java C

Boolean boolean int

Char type char // 16-bit unicode char /* 8 bits */

Arrays
int [] A = new int [10];
float [][] B =

new float [5][20];

int A[10];
float B[5][20];

Bound check // run-time checking /* no run-time check */

Void type // no equivalent void

Integer types

Floating
point types

Constant final int MAX = 1000; #define MAX 1000
(enumerations, “const”)

byte // 8 bits
short // 16 bits
int // 32 bits
long // 64 bits

char
short
int
long

float // 32 bits
double // 64 bits

float
double

24

Java vs. C, cont’d
Java C

Pointer type // pointer implicit in
// class variables

int *p;

String
concatenate

s1 + s2
#include <string.h>
strcat(s1, s2);

Arithmetic +, -, *, /, %, unary - +, -, *, /, %, unary -

Bit-wise ops >>, <<, >>>, &, |, ^ >>, <<, &, |, ^

Record type
class r {

int x;
float y;

}

struct r {
int x;
float y;

}

String type

Logical
Compare =, !=, >, <, >=, <= =, !=, >, <, >=, <=

String s1 = “Hello”;
String s2 = new

String(“hello”);

char *s1 = “Hello”;
char s2[6];
strcpy(s2, “hello”);

&&, ||, ! &&, ||, !

25

Java vs. C, cont’d
Java C

Comments

Block

{
statement1;
statement2;

}

{
statement1;
statement2;

}

Function /
procedure call

foo(x, y, z); foo(x, y, z);

Function
return return 5; return 5;

Assignments

Procedure
return

/* comments */

// another kind

/* comments */

=, *=, /=, +=, -=, <<=,
>>=, >>>=, =, ^=, |=, %=

=, *=, /=, +=, -=, <<=,
>>=, =, ^=, |=, %=

return; return;

26

Java vs. C, cont’d
Java C

Conditional

Switch

switch (n) {
case 1:

...
break;

case 2:
...
break;

default:
...

}

switch (n) {
case 1:

...
break;

case 2:
...
break;

default:
...

}

“goto” // no equivalent goto L;

Exception throw, try-catch-finally /* no equivalent */

if (expression)
statement1

else
statement2;

if (expression)
statement1

else
statement2;

27

Java vs. C, cont’d
Java C

“for” loop

“while” loop while (expression)
statement;

while (expression)
statement;

Terminate a
loop body

continue; continue;

“do- while”
loop

Terminate a
loop

for (int i=0;i<10;i++)
statement;

int i;
for (i=0; i<10; i++)

statement;

do {
statement;
…

} while (expression)

do {
statement;
…

} while (expression)

break; break;

28

Standard Input/Output

• Three standard I/O streams
– In: stdin
– Out (normal): stdout
– Out (errors): stderr

• Binding
– Flexible/dynamic binding of streams to actual devices or files
– Default binding

• stdin bound to keyboard
• stdout and stderr bound to the terminal screen

stdin program

stdout

stderr

29

Standard I/O in C
• Three standard I/O streams

– stdin
– stdout
– stderr

• Basic calls for standard I/O
– int getchar(void);
– int putchar(int c);
– int puts(const char *s);
– char *gets(char *s);

• Use “man” pages
% man getchar

#include <stdio.h>
int main(void) {

int c;
c = getchar();
while (c != EOF) {

putchar(c);
c = getchar();

}
return 0;

}

% a.out < file1 > file2

% a.out < file1 | a.out > file2

% a.out < file1 | a.out | a.out > file2

copyfile.c:

30

Pipes Connect Output to Input

stdin a.out

stdout

stderr

stdin a.out

stdout

stderr

% a.out < file1 | a.out > file2

31

What’s all this good for?
• In the old days…

– Programmers hard-coded input/output devices into programs
– Hard to program, and hard to port to different I/O devices

• Along came OS-360 (1964)
– Separate I/O device driver (in OS) from data (in program)
– A good early example of modularity and data abstraction
– However, still clumsy to connect output of one program to input of

another

32

What’s all this good for?

• Unix (early 1970s)
– First OS to have standard I/O redirection and pipes

• Standard I/O redirection
– Write program once
– Same program can be made to work for different input/output

devices at run time

• Good practice of modularity

stdin program

stdout

stderr

33

What’s all this good for?

• Pipes
– Write small programs that specialize in very simple tasks
– Connect lots of smaller programs to make bigger programs
– Makes bigger programs easier to write
– Earliest and best success story of programming with components

• Standard I/O redirection & pipes: big part of Unix success

• Good practice of modularity is a learned art

stdin program1

stdout

stderr

stdin program2

stdout

stderr

34

Formatted Output: printf
•int printf(char *format, ...);

– Translate arguments into characters according to “format”
– Output the formatted string to stdout

• Conversions (read “man printf” for more)
– %d − integer
– %f − float or double
– %3f − float or double with 3 decimal places
– %% −percent

• Examples
– int i = 217;
printf(“Course number is: %d”, i);

35

Formatted Input: scanf
•int scanf(const char *format, ...);

– Read characters from stdin
– Interpret them according to “format” and put them into the

arguments

• Conversions (read “man scanf” for more)
– %d − integer
– %f − float
– %lf − double
– %% − literal %

• Example
– double v;
scanf(“%lf”, &v);

– int day, month, year;
scanf(“%d/%d/%d”, &month, &day, &year);

36

Standard Error Handing: stderr
•stderr is the second output stream for output errors

• Some functions to use stderr
– int fprintf(FILE *stream, const char *format, ...);

• Same as printf except the file stream
– int fputc(int c, FILE *stream);

• putc() is the same as fputc()
– int fgetc(FILE *stream);

• getc() is the same as fgetc()

•Example
– fprintf(stderr, “This is an error.\n”);
– fprintf(stdout, “This is correct.\n”);
– printf(“This is correct.\n”);

37

Example

#include <stdio.h>
#include <stdlib.h>

const double KMETERS_PER_MILE = 1.609;

int main(void) {
int miles;
double kmeters;
printf(“miles: ”);
if (scanf(“%d”, &miles) != 1) {

fprintf(stderr, “Error: Expect a number.\n”);
exit(EXIT_FAILURE);

}
kmeters = miles * KMETERS_PER_MILE;
printf(“= %f kilometers.\n”, kmeters);
return 0;

}

38

Summary
• The goal of this course:

– Master the art of programming
– Learn C and assembly languages for systems programming
– Introduction to computer systems

• It is easy to learn C if you already know Java
– C is not object oriented, but many structures are similar
– Standard I/O functions are quite different from Java’s input and

output

• Next lecture
– Character input and output

http://www.cs.princeton.edu/courses/archive/fall07/cos217/

	COS 217: Introduction to Programming Systems
	Goals for Today’s Class
	Goals of COS 217
	Introductions
	Learning the Material: Tuning In
	Learning the Material: Books
	Learning the Material: Doing
	Facilities for Programming
	Why Debugging is Necessary…
	Software in COS126
	Software in the Real World
	Grading
	Policies
	Intuition: �Modularity/Abstraction/Interfaces
	Intuition:�Modularity/Abstraction/Interfaces
	Good Software is Modularized
	System Interfaces/Abstraction
	The C Programming Language
	The C Programming Language
	Java vs. C
	Java vs. C
	Java vs. C, cont’d
	Java vs. C, cont’d
	Java vs. C, cont’d
	Java vs. C, cont’d
	Java vs. C, cont’d
	Standard Input/Output
	Standard I/O in C
	Pipes Connect Output to Input
	What’s all this good for?
	What’s all this good for?
	What’s all this good for?
	Formatted Output: printf
	Formatted Input: scanf
	Standard Error Handing: stderr
	Example
	Summary

