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Information transfer and Landauer�s principle
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Abstract

In this paper we present an analysis of information transfer based on Landauer�s principle (i.e., erasure of infor-

mation is associated with an increase in entropy), as well as considerations of analyticity and causality. We demonstrate

that holomorphic functions allowing complete analytic continuation cannot propagate any information, such that

information transfer only occurs with analytic functions having points of non-analyticity (i.e., meromorphic functions).

Such points of non-analyticity (or discontinuities) are incompatible with adiabaticity, so that information transfer must

always be accompanied by a change in entropy: a dynamic reformulation of Landauer�s Principle. In addition, since

Brillouin proved that discontinuities cannot travel faster than the speed of light c, this also implies that information

cannot be transferred at superluminal speeds.
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1. Introduction

Recent reports of ‘‘fast light’’, e.g., [1], have

excited interest due to the implications for super-

luminal data transmission. However, the theoreti-

cal analyses associated with these reports have
neglected to include Landauer�s principle [2] and

have not fully considered the relationship between

entropy and information in a complete informa-
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tion-thermodynamic treatment. The close associ-

ation of information and entropy has already been

well described [3,4], often in negative correlation,

e.g., Brillouin�s concept of negentropy (i.e., nega-

tive entropy) for information [5]. In the following

analysis, we will demonstrate that proper inclusion
of these information-thermodynamic principles

yields both a more rigorous definition of what we

mean by information, and leads to a full retention

of classical causality.

Landauer�s principle [2], in essence, says that

the erasure of information requires energy, and

hence is associated with an increase in entropy;

whilst in contrast, information creation does not
require energy, and is not associated with a change
ed.
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(e.g., decrease) in entropy. This is a �static� state-
ment, since it only relates to the erasure/creation of

information at a particular spatial position. In this

paper, we apply Landauer�s principle to the

�dynamic� situation of information transfer, where

information is moved or translated from one
spatial position to another. Hence, the mathe-

matical arguments and discussions in this paper

are directed towards the idea that the transfer of

information from one spatial position A to an-

other spatial position B is associated with a change

(i.e., in general, an increase) in entropy.

Sommerfeld and Brillouin pioneered the use of

a step-discontinuity to analyse group velocity [6],
and found that in any causal medium a step-front

travels at the speed of light in vacuum c, via

forerunners, such that causality is not compro-

mised. Propagation of truncated Gaussian or co-

sine pulses in a dispersive medium has also been

extensively analysed, e.g., [7–12]. In contrast to the

step-discontinuity, such pulses allow the process of

analytic continuation. It has been suggested that a
complete temporal/frequency description of the

pulse may be found in the leading edge of the

pulse. Thus a replica of the complete pulse can be

�carved� out of the energy pedestal of the leading

edge (forerunner travelling at c) of the pulse and

allowed to propagate. Comparing the spacetime

positions of the centroids of the initial pulse and

the transmitted (i.e., replica) pulse appears to in-
dicate a superluminal velocity. This is an inap-

propriate comparison, however, since the replica

pulse was already present in the leading edge of the

pulse (which precedes the centroid), and which

travels at c. Hence any information associated

with the pulse was already in the forerunner that

travels at a speed c (or less), and physical super-

luminal velocities do not occur.
2. Differential information and entropy change

2.1. Analytic functions and filter theory

Complex calculus theory has been extensively

applied to the problem of group velocity determi-
nation, e.g., [6]. However, the properties of ana-

lytic functions have not to our knowledge been
explicitly applied to information transfer. These

functions have both local and global (i.e., distrib-

uted) properties, and obey the Cauchy–Riemann

equations. An analytic function that contains iso-

lated poles in the complex plane is known as

meromorphic [13]. Analytic continuation can be
used to reconstruct a meromorphic function over

the whole complex plane, except for the points of

non-analyticity (poles), where the Cauchy–Rie-

mann equations no longer apply. Hence, when a

signal used to �transmit� information from A to B

allows analytic continuation between those two

points, no information transfer takes place be-

tween A and B, since such a signal is already
completely defined at the destination point B.

In an important paper by Toll [14], it was found

that a function, which is causal (i.e., non-antici-

pative) in time, has an analytic Fourier transform

(FT). Its frequency components in the complex

frequency plane are analytic and obey the Cauchy–

Riemann equations. We note that a sufficient

condition for the analyticity of a function is that it
obeys the Cauchy–Riemann equations [15]. An

analytic function allows analytic continuation at

any point in the complex plane where the Cauchy–

Riemann conditions hold. Generalising Toll�s pa-

per, any function that is zero from a fixed point

back to minus infinity on the real axis (i.e., a

�spatial� causality or boundedness) will have an

analytic FT. This means that any �windowed� or
�apertured� function has an analytic FT. Hence, a

Young�s twin-slit interference pattern, for exam-

ple, is analytic and allows for analytic continua-

tion. Likewise, reflection and transmission

coefficients are given by the FT of the finite spatial

distribution of scatterers (bounded in spatial ex-

tent) [16], such that they too are analytic. Thus

both transverse and longitudinal grating structures
scatter light analytically. Since the Maxwell equa-

tions are also an example of the Cauchy–Riemann

equations [17], solutions to equations describing

wave propagation through finite structures are

therefore analytic.

Filter theory has also been extensively devel-

oped via analytic function theory to describe

physically realizable network transfer functions.
Two important tenets are concerned with causality

(non-anticipative functions) and stability. The first
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of these is satisfied by the Paley–Wiener criterion

[18,19], whilst stability is ensured if the filter func-

tion�s denominator is a Hurwitz polynomial [18].

We now show (we believe for the first time) that

these criteria must also define physically realizable

information-bearing signals. We point out that the
Gaussian function does not satisfy the Paley–

Wiener criterion, whilst standard trigonometric

functions fail the Hurwitz requirement by having

poles in the lower-half of the complex plane.
2.2. Differential information and complex function

theory

If we are to have a meaningful concept of in-

formation transfer, and therefore associated spa-

tial differences in information, that aspect can only

be described by the differential information. The

differential information (in units of bits) of a

continuously-varying function pðxÞ in space x is

given by [20]:

I ¼
Z 1

�1
pðxÞ log2 pðxÞdx; ð1aÞ

whereZ 1

�1
p xð Þdx ¼ 1: ð1bÞ

In the infinitesimal limit of the well-known

discrete summation describing information, there

is a diverging part that we ignore in (1a). This is

because when considering differences between dif-

ferential informations the diverging parts cancel;

the constant (infinite) divergent part due to the

infinitesimal limit being the same everywhere.
Since we are comparing the relative information

between two spatial positions, A and B, compari-

son of the differential information at each of these

two locations is therefore the meaningful metric.

We assume that pðxÞ is the intensity distribution of

a wave amplitude distribution wðxÞ satisfying a

wave equation for a physically realistic system,

such that pðxÞ ¼ jwðxÞj2. Eq. (1b) assumes that pðxÞ
is normalized, so that it is also equivalent to a

probability distribution. As indicated in Section

2.1, if wðxÞ is a solution to a wave equation for a

finite scattering medium, it and its complex con-

jugate allow analytic continuation. We assume
that in general wðxÞ can be expressed as a sum of

two purely-real functions of x, such that

wðxÞ ¼ rðxÞ þ isðxÞ. Hence by analytic continua-

tion we can employ the function AwðxÞ ¼ gðx; yÞþ
ihðx; yÞ, where A is the analytic continuation op-

erator on wðxÞ, such that x is replaced by z ¼ xþ
iy. The complex plane z is given by z ¼ xþ iy, y
being the imaginary-axis co-ordinate, whilst the

purely-real functions gðx; yÞ and hðx; yÞ obey the

Cauchy–Riemann equations oxg ¼ oyh and oyg ¼
�oxh. Together, g and h form an analytic function,

and whilst they are different to the functions r and
s, along the real x-axis where y ¼ 0 we have that

gðx; y ¼ 0Þ þ ihðx; y ¼ 0Þ ¼ rðxÞþ isðxÞ. We note
that the complex conjugate of Aw, given by

½Aw�� ¼ gðx; yÞ � ihðx; yÞ, is not an analytic func-

tion, since it does not obey the Cauchy–Riemann

equations. However, the complex conjugate of the

wave amplitude w�ðxÞ given by w�ðxÞ ¼ rðxÞ � isðxÞ
can be analytically continued to yield Aw�ðxÞ ¼
uðx; yÞ þ ivðx; yÞ, where again the purely-real

functions u and v obey the Cauchy–Reimann
equations, and form an analytic function. Along

the real x-axis (where y ¼ 0) we again have that

uðx; y ¼ 0Þ þ ivðx; y ¼ 0Þ ¼ rðxÞ � isðxÞ. In general,

the functions u and v are different to g and h, re-
spectively, since the combined operations of ana-

lytic continuation and complex conjugation do not

commute (and also differ in whether the resulting

function is analytic or not). We rewrite Eq. (1a) as:

I ¼
Z 1

�1
wðxÞw�ðxÞ log2 wðxÞw�ðxÞ½ �dx: ð2Þ

The products of analytic functions, and power

series of analytic functions are also analytic [13],

hence the integrand in Eq. (2) can be analytically
continued to yield a closed contour integration in

the complex z-plane:
I

gð þ ihÞ uð þ ivÞ log2 gð½ þ ihÞ uð þ ivÞ�dz

¼ 2pi
X

R; ð3Þ

where
P

R is the sum of the enclosed residues,

from the Cauchy residue theorem. In the conven-

tional manner, we can express the closed contour

integral as an integral along the real x-axis,
followed by an anti-clockwise semicircular line
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integral X in the upper-half complex z-plane, and
let the range along the x-axis and the radius of X
tend to infinity, so as to yield:

Z 1

�1
pðxÞ log2 pðxÞdxþ

Z
X

gð þ ihÞ uð þ ivÞ

� log2 gð½ þ ihÞ uð þ ivÞ�dz ¼ 2pi
X

R: ð4Þ

From the Paley–Wiener criterion we must have

that g; h; u; v ! 0 as jzj ! 1. In which case, the
semicircular line integral along X will equal zero.

Hence the information associated with a function

pðxÞ is given by the sum of the associated residues:

I ¼
Z 1

�1
pðxÞ log2 pðxÞdx ¼ 2pi

X
R: ð5Þ

Residues are due to singularities and poles, where

analytic continuation cannot be performed (and

the Cauchy–Riemann equations do not locally

hold), such that Eq. (5) indicates that the differ-

ential information of a function is therefore asso-

ciated with these points of discontinuity. A

holomorphic function allowing analytic continua-

tion across the whole of the complex plane does
not have any points of discontinuity, such that the

sum of the residues is zero. Hence, according to

Eq. (5) a holomorphic wave function contains zero

differential information, and therefore cannot be

used to transmit information anywhere. Only

meromorphic functions (which have points of non-

analyticity) have differential information associ-

ated with them. The information associated with a
physically realizable meromorphic (information-

bearing) function is thus simply given by the

Cauchy residue theorem of Eq. (5). We believe this

to be a novel application of the calculus of residues

to information theory. An information-bearing

signal must therefore have points of non-analy-

ticity [21,22], so as not to allow complete �predic-
tion� or analytic continuation in the complex
plane. We note that a point of non-analyticity

cannot be a zero-order discontinuity, since that

has finite power at infinite frequencies and hence

does not fulfill the Paley–Wiener criterion [23].

Since information is associated with points of non-

analyticity (i.e., discontinuities), Brillouin�s work

[6] shows that superluminal information propa-

gation is not possible.
2.3. Information transfer and entropy change

Landauer�s principle requires the erasure of in-

formation to be associated with an increase in

entropy; whilst creation of information is not as-
sociated with a change (e.g., reduction) in entropy.

Hence, transfer of information from A to B can be

understood to be the erasure of the information at

location A (which from Landauer�s Principle is

accompanied by an increase in entropy), pro-

ceeded by the re-creation of that same information

at B. Thus transferring information is associated

with an increase in entropy. Likewise, the points of
non-analyticity and discontinuities associated with

information are inimical to assumptions of

�smoothness� and adiabaticity in a dynamic system.

Hence, information transfer must be accompanied

by changes in entropy: a dynamic reformulation of

Landauer�s principle. Finally, we note that infor-

mation transfer is distinct from cloning or copying

of information from A to B. This action cannot be
perfectly performed due to the no-cloning theorem

[24], and the impossibility of noiseless amplifica-

tion. Both of these processes are related to infor-

mation loss and hence entropy increase; the main

thrust of this paper.
3. Conclusions

In this paper we have demonstrated that in-

formation can only be carried by non-holomor-

phic functions. The points of non-analyticity
associated with these functions are points of dis-

continuity, such that adiabatic conditions cannot

be maintained for information transfer. Thus in-

formation transfer must be accompanied by a

change in entropy: a dynamic reformulation of

Landauer�s principle. Points of non-analyticity

and discontinuities, i.e., information, cannot travel

faster than c in any medium, thus maintaining
causality.
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