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We consider game theory from the perspective of quantum algorithms. Strategies in classical game
theory are either pure (deterministic) or mixed (probabilistic). While not every two-person zero-sum
finite game has an equilibrium in the set of pure strategies, von Neumann showed that there is always
an equilibrium at which each player follows a mixed strategy. A mixed strategy deviating from the
equilibrium strategy cannot increase a player’s expected payoff. We show by example, however, that a
player who implements a quantum strategy can increase his expected payoff, and explain the relation to
efficient quantum algorithms. [S0031-9007(98)08225-8]

PACS numbers: 03.67.—a, 02.50.Le, 03.65.—w, 89.80.+h

Attention to the physical representation of informationbeat him at flipping a “penny” over is to place a penny,
underlies the recent theories of gquantum computatiorhead up, in a box, whereupon they will take tur@s then
guantum cryptography, and quantum communication. IrP, thenQ) flipping the penny over (or not), without being
each case, representation in a quantum system provideble to see it. O wins if the penny is head up when they
advantages over the classical situation: Simon’s quanturmpen the box.
algorithm to identify the period of a function chosen This is a two-person zero-sum strategic game which
by an oracle is more efficient than any deterministic ormight be analyzed traditionally using the following payoff
probabilistic algorithm [1] and provides the foundation for matrix:

Shor’s polynomial time quantum algorithm for factoring NN NF FN FF

[2]. The quantum protocols for key distribution devised
by Wiesner, by Bennett and Brassard, and by Ekert are
qualitatively more secure against eavesdropping than any Fl| 1 -1 -1 1
classical cryptosystem [3]. Cleve and Buhrman and also
van Dam, Hgyer, and Tapp have shown that prior quanturhere the rows and columns are labeleditjg and Q’s
entanglement reduces communication complexity [4]. IrPure strategies, respectively; denotes a flipover anf

this Letter we add game theory to the listt Quantumdenotes no flipover, and the numbers in the matrix are
strategies can be more successful than classical ones. P’s payoffs: 1 indicating a win and-1 a loss [10]. For

While this result may seem obscure or surprising, in facexample, consider the top entry in the second colu@is:
it is neither. Cryptographic situations, for example, areStrategy is to flip the penny over on his first turn and then
readily conceived as games; it is reasonable to ask if theot flip it over on his second, whilg’s strategy is to not
advantages of quantum key distribution generalize. GamBip the penny over on his turn.  The result is that the state
theory, on the other hand, seems to beg for a quantum ve@f the penny is, successivel§t, 7, 7, T, so P wins.
sion: Classical strategies can be pure or mixed; the corre- P has no difficulty determining his optimal strategy:
spondence of this nomenclature, due to von Neumann [5puppose he doesn't flip the penny over. Themiflips
with that of quantum mechanics is surely no accident [6]/t over an even number of time#, loses. Similarly, if
Furthermore, games against nature, originally studied by’ flips the penny over, then i flips it over only once,
Milnor [7], should include those for which nature is quan- P loses. ThusPQ penny flipover has no deterministic
tum mechanical—this is exactly the setting for quantumsolution [5], no deterministic Nash equilibrium [11]: there
error correcting codes [8]. Finally, in their extensive form,iS no pair of pure strategies, one for each player, such
games are represented by “trees” [5], just as are (quanturff)at neither player improves his result by changing his
algorithms [1]. We will exploit this similarity to demon- strategy while the other player does not. But, as von
strate the effectiveness of quantum strategies when playdgeumann proved there must be [5,12], since this is a
against classical ones, by considering the following veryfwo-person zero-sum strategic game with only a finite
simple game involving a “quantum penny” which appearshumber of strategies, there is a probabilistic solution: It is
classical to one of the players, but which the other can pugasy to check that the pair of mixed strategies consisting
into an arbitrary quantum superposition of head and tail. of P flipping the penny over with probability and Q

PQ penny flipover—The Starship Enterprise is facing playing each of his four strategies with probabiliﬁl
some imminent calamity whe@® appears on the bridge is a probabilistic Nash equilibrium: Neither player can
and offers to help, provided Captain Picam®) [9] can  improve hisexpectedpayoff (which is 0 in this case) by

-1 1 1 —1 ,
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changing the probabilities with which he plays each of his Q, however, is eponymously usinggaiantumstrategy,
pure strategies while the other player does not. namely a sequence of unitary, rather than stochastic,
Figuring his chances of winning aré, P agrees to matrices to act on the penny. In standard Dirac notation
play. But he loses. The rules of the game allowtwo  [13] the basis of is written{|H), |T)}. A pure quantum
moves so, although his analysis indicates no benefipfor state for the penny is a linear combinatiarH) +
from the second moveP tries arguing that they should 5|T),a,b € C,aa + bb = 1, which means that, if the

therefore play several times. To his surpr@eagrees— box is opened, the penny will be head up with probability
and proceeds to be# the next nine times as wellP is  aa. Since the penny starts in std#é), this is the state of
sure thatQ is cheating. Is he? the penny ifQ’s first action is the unitary operation

To understand whap is doing, let us reanalyz€Q H T
penny flipover in terms of the sequence of moves—in U =Ula,b)=nulq b 3)
its extensiveform. Conventionally, the extensive form T(b —5,>-

of a game is. illustrated by a tree with.a distinct VerteX  Recall thatP is also living up to his initials, using a
for each partial sequence of player actions and outgoing|assicalprobabilistic strategy in which he flips the penny
edges from each vertex corresponding to the possible agyer with probabilityp. After his action the penny is in
tions on the next move. For our purposes it is more usef mixedquantum state, i.e., it is in the pure staté{) +

to study the quotient of this tree obtained by |dent|fy|nga|T> with probability p and in the pure state|H) + b|T)
the vertices at Wh|ch both the state of the game anq thﬁ/ith probability 1 — p. Mixed states are conveniently
number of precgdlng moves are the same. Thus we '"”Sr‘epresented adensitymatrices [6], elements of ® V1
trate the extensive form atQ penny flipover, not with & ith trace 1; the diagonal entrii, i) is the probability
binary tree of heigh8, but with the directed graph shown a1 the system is observed to be in staje The density

in Fig. 1. The vertices are Iabele’@l or T according to  atrix for a pure statdy) € V is the projection matrix
the_ state of the penny, ar_1d each diagonal arrow re_preser]tlﬁﬂw, and the density matrix for a mixed state is the
a flipover while each vertical arrow represents no ﬂ'povercorresponding convex linear combination of pure density

Now it is natural to define a two-dimensional vector matrices. Unitary transformations act on density matrices
spaceV with basis{H, T} and to represent player strate- by conjugation. The penny starts in the pure sjafe=

gies by sequences 2f X 2 matrices. That is, the matrices |H)(H| and Q’s first action puts it into the pure state:
T

H T H —
F::H<0 1) and N::H<] O> 1) p1=U1P0U1T=<ZC—l ZlE?) (4)
r\1 0 7\0 1 a

correspond to flipping and not flipping the penny over,P’s mixed action acts on this density matrix, not as a
respectively, since we define them to act by left multipli- Stochastic matrix on a probabilistic state but as a convex
cation on the vector representing the state of the pennyinear combination of unitary (deterministic) transforma-

A mixed action is a convex linear combination Bfand  tions:

N, which acts as @ X 2 (doubly) stochastic matrix: p> = pFpiFt + (1 — p)NpNt
H T
H(1—p p (2) _ (pbb + (1 — plaa pba + (1 — p)ab
T p 1—p pab + (1 — p)ba paa + (1 — p)bb )"
if the player flips the penny over with probability € (5)

[0,1]. A sequence of mixed actions puts the stateForp _
of the penny into a convex linear combinatie +
(1 — a)T,0 = a = 1, which means that if the box is
opened the penny will be head up with probabitity

1 the diagonal elements of, are eachs. If
the game were to end her®’s strategy would ensure
him an expected payoff of 0, independently ¢fs
strategy. In fact, ifQ were to employ any strategy for
which aa # bb, P could obtain an expected payoff of
laa — bb| > 0 by settingp = 0, 1 according to whether
bb > aa, or the reverse. Similarly, i were to choose
p# % 0 could obtain an expected payoff #p — 1|
by settinga = 1 or b = 1 according to whethep < L
or the reverse. Thus the (mixed, quantum) equilibria for
the two-move game are paiss F + 1 N1,[U(a, b)]) for
which aa = 5 = bb, and the outcome is the same as if
both players use optimal mixed strategies.

But Q0 has another movd/;, which again transforms
the state of the penny by conjugationgdg = U3p2U3Jr. If
FIG. 1. PQ penny flipover in extensive form. Q’s strategy consists di;, = U(1/+/2,1/+/2) = Us, his
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first action puts the penny into a simultaneous eigenvalue Of course, the more interesting question is for which
1 eigenstate of botl andN, which is therefore invariant games there is a quantum strategy which improves upon
under any mixed strategypF + (1 — p)N of P, and the optimal mixed strategy. By the analogy with algo-
his second action inverts his first to giyg = |H)(H|. rithms, this is essentially the fundamental question of
That is,with probability 1, the penny is head ugSince  which problems can be solved more efficiently by quan-
Q can do no better than to win with probability 1, this tum algorithms than by classical ones. We may hope that
is an optimal quantum strategy for him. All of the pairs the game theoretic perspective will suggest new possibili-
((pF + (1 — p)NL,|1U(1/\2,1/42),U(1/4/2,1/4/2)]) ties for efficient quantum algorithms.

are (mixed, quantum) equilibria faPQ penny flipover, Another natural question to ask is what happens if both
with value —1 to P; this is why he loses every game. players use quantum strategies. By consideAggpenny

PQ penny flipover is a very simple game, but it flipover we can prove the following:
is structurally similar to the oracle problems for which Theorem 2—A two-person zero-sum game need not
efficient quantum algorithms are known—withplaying  have a (quantum, quantum) equilibrium.
the role of the oracle. In Simon’s problem the functions Proof—Consider an arbitrary pair of quantum strate-
f:{0,1}" — {0, 1}", which satisfy f(x) = f(y) if and  gies (U, ],[U;, Us]) for PQ penny flipover. Suppose
only if y=x@&s for somes € {0,1}" (& denotes UsU,U|H) # |H). ThenQ can improve his expected
componentwise addition, mod 2), correspondPte pure  payoff (to 1) by changing his strategy, replacitig with
strategies; we may imagine the oracle choosing a mixed; 'U, ', which is unitary sincel/; and U, are. Simi-
strategy intended to minimize our chances of efficientlylarly, supposelU;U,U,|H) # |T). ThenP can improve
determinings probabilistically. Simon’s algorithm is a his expected payoff (to 1) by changing his strategy, re-
quantum strategy which is more successful than anplacingU, with U;s ' FU; ', which is unitary since each of
mixed, i.e., probabilistic, one [1]. Similarly, in the U, Us;, andF is. SinceU;U,U,|H) cannot equal both
problem of searching a database of sizghe locations in  |H) and|T), at least one of the players can improve his
the database correspond to pure strategies; again, we maypected payoff by changing his strategy while the other
imagine the oracle choosing a mixed strategy designed tdoes not. Thu§{U,],[U;, Us]) cannot be an equilibrium,
frustrate our search for an item at some specified locatiorfor any U, U,, U;, SoPQ penny flipover has no (quantum,
Grover’s algorithm is a quantum strategy for a game ofquantum) equilibrium.
2m moves alternating between us and the oracle, where That is, the situation when both players use quantum
m = O(x/N), which outperforms any mixed strategy, i.e., strategies is the same as when they both use pure
any probabilistic algorithm [14]. These three examples(classical) strategies: There need not be any equilibrium
suggest that, even though mixed strategies and quantuselution. This suggests looking for the analog of von
strategies generalize pure strategies in distinct direction$yeumann’s result on the existence of mixed strategy
nevertheless: equilibria [5,12]. So we should consider strategies which

Theorem 1—A player using an optimal quantum are convex linear combinations of unitary actions—mixed
strategy in a two-person zero-sum game has an expectegiantum strategies.
payoff at least as great as his expected payoff with an Theorem 3—A two-person zero-sum game always has
optimal mixed strategy. a (mixed quantum, mixed quantum) equilibrium.

Proof (sketch)—A sequence of mixed actions puts the Proof.—Since mixed quantum actions form a convex
game into a convex linear combinatidn p;|i) of pure  compact subset of a finite-dimensional vector space, this
states. If one of the players uses a quantum strategy, the an immediate corollary of Glicksberg’s generalization
state of the game is described instead by a density matrifi5] of Nash’s proof [16] for the existence of game
We must show that there is always a quantum strateggquilibria.
which reproduces the; as the diagonal elements in the  Finally, we remark that, while decoherence precludes
density matrix. Assume by induction that this is true upthe play of PQ penny flipover with a real penny, there
to a move of the classical player. His action has the samgre many two-state quantum systems which can be put
effect on the diagonal elements of the density matrix as ifnto the superposition of states necessary to implement a
does on thep; in the original (mixed, mixed) equilibrium quantum strategy. Each of the physical systems in which
move sequence [see Eq. (5)]. All that remains to beyuantum gate operations have been demonstrated—QED
shown is that a single action of the quantum player camavities [17], ion traps [18], and NMR machines [19]—
be chosen to reproduce the effect of a mixed action. Itigould be used to play both classical and quantum strate-
necessary only to consider(2) actions on a generdl X  gies in games oPQ penny flipover. Q’s strategy is es-

2 density matrix. If the phase of the, 2) element in the  sentially an error correcting code for bits subject to noise:
density matrix isy, a straightforward calculation verifies ¢, = U(1,0)U(1/+/2,1/+/2) reconstitutes an initial state
that the unitary matrix/(ie~'”/T — p,/p) reproduces which is either|H) or |T), whether or not a bit flip error

the effect of the mixed actiopF + (1 — p)N on the occurs. In this context, the superiority 6f's quantum
diagonal elements. strategy over any classical strategy translates to a channel
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capacity [20] of 1, independent of the error rate. In fact,
this is a quantum error correcting code [8] for a single

qubit [21], i.e., any quantum superpositiaiH) + b|T),

subject to only bit flip errors and may be compared to the
recent experimental demonstration of phase error correc-
tion in a NMR system [22].
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