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We consider game theory from the perspective of quantum algorithms. Strategies in classical
theory are either pure (deterministic) or mixed (probabilistic). While not every two-person zero-s
finite game has an equilibrium in the set of pure strategies, von Neumann showed that there is a
an equilibrium at which each player follows a mixed strategy. A mixed strategy deviating from
equilibrium strategy cannot increase a player’s expected payoff. We show by example, however,
player who implements a quantum strategy can increase his expected payoff, and explain the rela
efficient quantum algorithms. [S0031-9007(98)08225-8]
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Attention to the physical representation of informatio
underlies the recent theories of quantum computatio
quantum cryptography, and quantum communication.
each case, representation in a quantum system prov
advantages over the classical situation: Simon’s quant
algorithm to identify the period of a function chose
by an oracle is more efficient than any deterministic
probabilistic algorithm [1] and provides the foundation fo
Shor’s polynomial time quantum algorithm for factoring
[2]. The quantum protocols for key distribution devise
by Wiesner, by Bennett and Brassard, and by Ekert a
qualitatively more secure against eavesdropping than a
classical cryptosystem [3]. Cleve and Buhrman and a
van Dam, Høyer, and Tapp have shown that prior quantu
entanglement reduces communication complexity [4].
this Letter we add game theory to the list: Quantu
strategies can be more successful than classical ones.

While this result may seem obscure or surprising, in fa
it is neither. Cryptographic situations, for example, a
readily conceived as games; it is reasonable to ask if
advantages of quantum key distribution generalize. Ga
theory, on the other hand, seems to beg for a quantum v
sion: Classical strategies can be pure or mixed; the cor
spondence of this nomenclature, due to von Neumann [
with that of quantum mechanics is surely no accident [6
Furthermore, games against nature, originally studied
Milnor [7], should include those for which nature is quan
tum mechanical—this is exactly the setting for quantu
error correcting codes [8]. Finally, in their extensive form
games are represented by “trees” [5], just as are (quantu
algorithms [1]. We will exploit this similarity to demon-
strate the effectiveness of quantum strategies when pla
against classical ones, by considering the following ve
simple game involving a “quantum penny” which appea
classical to one of the players, but which the other can p
into an arbitrary quantum superposition of head and tai

PQ penny flipover.—The Starship Enterprise is facing
some imminent calamity whenQ appears on the bridge
and offers to help, provided Captain PicardsPd [9] can
0031-9007y99y82(5)y1052(4)$15.00
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beat him at flipping a “penny” over:P is to place a penny,
head up, in a box, whereupon they will take turns (Q, then
P, thenQ) flipping the penny over (or not), without being
able to see it.Q wins if the penny is head up when they
open the box.

This is a two-person zero-sum strategic game whic
might be analyzed traditionally using the following payoff
matrix:

NN NF FN FF

N 21 1 1 21

F 1 21 21 1

,

where the rows and columns are labeled byP’s andQ’s
pure strategies, respectively;F denotes a flipover andN
denotes no flipover, and the numbers in the matrix ar
P’s payoffs: 1 indicating a win and21 a loss [10]. For
example, consider the top entry in the second column:Q’s
strategy is to flip the penny over on his first turn and the
not flip it over on his second, whileP’s strategy is to not
flip the penny over on his turn. The result is that the stat
of the penny is, successively:H, T , T , T , soP wins.

P has no difficulty determining his optimal strategy:
Suppose he doesn’t flip the penny over. Then ifQ flips
it over an even number of times,P loses. Similarly, if
P flips the penny over, then ifQ flips it over only once,
P loses. ThusPQ penny flipover has no deterministic
solution [5], no deterministic Nash equilibrium [11]: there
is no pair of pure strategies, one for each player, suc
that neither player improves his result by changing hi
strategy while the other player does not. But, as vo
Neumann proved there must be [5,12], since this is
two-person zero-sum strategic game with only a finite
number of strategies, there is a probabilistic solution: It i
easy to check that the pair of mixed strategies consistin
of P flipping the penny over with probability12 and Q
playing each of his four strategies with probability14
is a probabilistic Nash equilibrium: Neither player can
improve hisexpectedpayoff (which is 0 in this case) by
© 1999 The American Physical Society
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changing the probabilities with which he plays each of h
pure strategies while the other player does not.

Figuring his chances of winning are12 , P agrees to
play. But he loses. The rules of the game allowQ two
moves so, although his analysis indicates no benefit forQ
from the second move,P tries arguing that they should
therefore play several times. To his surpriseQ agrees—
and proceeds to beatP the next nine times as well.P is
sure thatQ is cheating. Is he?

To understand whatQ is doing, let us reanalyzePQ
penny flipover in terms of the sequence of moves—
its extensiveform. Conventionally, the extensive form
of a game is illustrated by a tree with a distinct verte
for each partial sequence of player actions and outgo
edges from each vertex corresponding to the possible
tions on the next move. For our purposes it is more use
to study the quotient of this tree obtained by identifyin
the vertices at which both the state of the game and
number of preceding moves are the same. Thus we ill
trate the extensive form ofPQ penny flipover, not with a
binary tree of height3, but with the directed graph shown
in Fig. 1. The vertices are labeledH or T according to
the state of the penny, and each diagonal arrow represe
a flipover while each vertical arrow represents no flipove

Now it is natural to define a two-dimensional vecto
spaceV with basishH, T j and to represent player strate
gies by sequences of2 3 2 matrices. That is, the matrices

F :=
H T

H

T

µ
0 1
1 0

∂
and N :=

H T

H

T

µ
1 0
0 1

∂
(1)

correspond to flipping and not flipping the penny ove
respectively, since we define them to act by left multipl
cation on the vector representing the state of the pen
A mixed action is a convex linear combination ofF and
N , which acts as a2 3 2 (doubly) stochastic matrix:

H T

H

T

µ
1 2 p p

p 1 2 p

∂
(2)

if the player flips the penny over with probabilityp [
f0, 1g. A sequence of mixed actions puts the sta
of the penny into a convex linear combinationaH 1

s1 2 adT , 0 # a # 1, which means that if the box is
opened the penny will be head up with probabilitya.

FIG. 1. PQ penny flipover in extensive form.
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Q, however, is eponymously using aquantumstrategy,
namely a sequence of unitary, rather than stochas
matrices to act on the penny. In standard Dirac notati
[13] the basis ofV is written hjHl, jT lj. A purequantum
state for the penny is a linear combinationajHl 1

bjT l, a, b [ C, aā 1 bb̄ ­ 1, which means that, if the
box is opened, the penny will be head up with probabili
aā. Since the penny starts in statejHl, this is the state of
the penny ifQ’s first action is the unitary operation

U1 ­ Usa, bd :=
H T

H

T

µ
a b̄
b 2ā

∂
.

(3)

Recall thatP is also living up to his initials, using a
classicalprobabilistic strategy in which he flips the penn
over with probabilityp. After his action the penny is in
a mixedquantum state, i.e., it is in the pure statebjHl 1

ajTl with probabilityp and in the pure stateajHl 1 bjT l
with probability 1 2 p. Mixed states are conveniently
represented asdensitymatrices [6], elements ofV ≠ Vy

with trace 1; the diagonal entrysi, id is the probability
that the system is observed to be in statejil. The density
matrix for a pure statejcl [ V is the projection matrix
jcl kcj, and the density matrix for a mixed state is th
corresponding convex linear combination of pure dens
matrices. Unitary transformations act on density matric
by conjugation. The penny starts in the pure stater0 ­
jHl kHj andQ’s first action puts it into the pure state:

r1 ­ U1r0U
y
1 ­

µ
aā ab̄
bā bb̄

∂
. (4)

P’s mixed action acts on this density matrix, not as
stochastic matrix on a probabilistic state but as a conv
linear combination of unitary (deterministic) transforma
tions:

r2 ­ pFr1Fy 1 s1 2 pdNr1Ny

­

µ
pbb̄ 1 s1 2 pdaā pbā 1 s1 2 pdab̄
pab̄ 1 s1 2 pdbā paā 1 s1 2 pdbb̄

∂
.

(5)

For p ­ 1
2 the diagonal elements ofr2 are each1

2 . If
the game were to end here,P’s strategy would ensure
him an expected payoff of 0, independently ofQ’s
strategy. In fact, ifQ were to employ any strategy for
which aā fi bb̄, P could obtain an expected payoff o
jaā 2 bb̄j . 0 by settingp ­ 0, 1 according to whether
bb̄ . aā, or the reverse. Similarly, ifP were to choose
p fi

1
2 , Q could obtain an expected payoff ofj2p 2 1j

by settinga ­ 1 or b ­ 1 according to whetherp ,
1
2 ,

or the reverse. Thus the (mixed, quantum) equilibria f
the two-move game are pairssssf 1

2 F 1
1
2 Ng, fUsa, bdgddd for

which aā ­ 1
2 ­ bb̄, and the outcome is the same as

both players use optimal mixed strategies.
But Q has another move,U3, which again transforms

the state of the penny by conjugation tor3 ­ U3r2U
y
3 . If

Q’s strategy consists ofU1 ­ Us1y
p

2, 1y
p

2 d ­ U3, his
1053
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first action puts the penny into a simultaneous eigenva
1 eigenstate of bothF andN, which is therefore invariant
under any mixed strategypF 1 s1 2 pdN of P, and
his second action inverts his first to giver3 ­ jHl kHj.
That is,with probability 1, the penny is head up.Since
Q can do no better than to win with probability 1, thi
is an optimal quantum strategy for him. All of the pair
sssfpF 1 s1 2 pdNg, jUs1y

p
2, 1y

p
2d, Us1y

p
2, 1y

p
2 dgddd

are (mixed, quantum) equilibria forPQ penny flipover,
with value21 to P; this is why he loses every game.

PQ penny flipover is a very simple game, but i
is structurally similar to the oracle problems for whic
efficient quantum algorithms are known—withP playing
the role of the oracle. In Simon’s problem the function
f : h0, 1jn ! h0, 1jn, which satisfy fsxd ­ fs yd if and
only if y ­ x © s for some s [ h0, 1jn (© denotes
componentwise addition, mod 2), correspond toP’s pure
strategies; we may imagine the oracle choosing a mix
strategy intended to minimize our chances of efficient
determinings probabilistically. Simon’s algorithm is a
quantum strategy which is more successful than a
mixed, i.e., probabilistic, one [1]. Similarly, in the
problem of searching a database of sizeN , the locations in
the database correspond to pure strategies; again, we
imagine the oracle choosing a mixed strategy designed
frustrate our search for an item at some specified locati
Grover’s algorithm is a quantum strategy for a game
2m moves alternating between us and the oracle, wh
m ­ Os

p
Nd, which outperforms any mixed strategy, i.e

any probabilistic algorithm [14]. These three example
suggest that, even though mixed strategies and quan
strategies generalize pure strategies in distinct directio
nevertheless:

Theorem 1.—A player using an optimal quantum
strategy in a two-person zero-sum game has an expec
payoff at least as great as his expected payoff with
optimal mixed strategy.

Proof (sketch).—A sequence of mixed actions puts th
game into a convex linear combination

P
pijil of pure

states. If one of the players uses a quantum strategy,
state of the game is described instead by a density mat
We must show that there is always a quantum strate
which reproduces thepi as the diagonal elements in the
density matrix. Assume by induction that this is true u
to a move of the classical player. His action has the sa
effect on the diagonal elements of the density matrix as
does on thepi in the original (mixed, mixed) equilibrium
move sequence [see Eq. (5)]. All that remains to b
shown is that a single action of the quantum player c
be chosen to reproduce the effect of a mixed action. It
necessary only to consider Us2d actions on a general2 3

2 density matrix. If the phase of thes1, 2d element in the
density matrix isg, a straightforward calculation verifies
that the unitary matrixUsie21g

p
1 2 p,

p
p d reproduces

the effect of the mixed actionpF 1 s1 2 pdN on the
diagonal elements.
1054
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Of course, the more interesting question is for whic
games there is a quantum strategy which improves up
the optimal mixed strategy. By the analogy with algo
rithms, this is essentially the fundamental question
which problems can be solved more efficiently by qua
tum algorithms than by classical ones. We may hope t
the game theoretic perspective will suggest new possib
ties for efficient quantum algorithms.

Another natural question to ask is what happens if bo
players use quantum strategies. By consideringPQ penny
flipover we can prove the following:

Theorem 2.—A two-person zero-sum game need n
have a (quantum, quantum) equilibrium.

Proof.—Consider an arbitrary pair of quantum strate
gies sfU2, g, fU1, U3gd for PQ penny flipover. Suppose
U3U2U1jHl fi jHl. Then Q can improve his expected
payoff (to 1) by changing his strategy, replacingU3 with
U21

1 U21
2 , which is unitary sinceU1 and U2 are. Simi-

larly, supposeU3U2U1jHl fi jT l. ThenP can improve
his expected payoff (to 1) by changing his strategy, r
placingU2 with U21

3 FU21
1 , which is unitary since each of

U1, U3, andF is. SinceU3U2U1jHl cannot equal both
jHl and jT l, at least one of the players can improve h
expected payoff by changing his strategy while the oth
does not. ThussfU2g, fU1, U3gd cannot be an equilibrium,
for anyU1, U2, U3, soPQ penny flipover has no (quantum
quantum) equilibrium.

That is, the situation when both players use quantu
strategies is the same as when they both use p
(classical) strategies: There need not be any equilibri
solution. This suggests looking for the analog of vo
Neumann’s result on the existence of mixed strate
equilibria [5,12]. So we should consider strategies whi
are convex linear combinations of unitary actions—mixe
quantum strategies.

Theorem 3.—A two-person zero-sum game always ha
a (mixed quantum, mixed quantum) equilibrium.

Proof.—Since mixed quantum actions form a conve
compact subset of a finite-dimensional vector space, t
is an immediate corollary of Glicksberg’s generalizatio
[15] of Nash’s proof [16] for the existence of gam
equilibria.

Finally, we remark that, while decoherence preclud
the play of PQ penny flipover with a real penny, there
are many two-state quantum systems which can be
into the superposition of states necessary to implemen
quantum strategy. Each of the physical systems in wh
quantum gate operations have been demonstrated—Q
cavities [17], ion traps [18], and NMR machines [19]—
could be used to play both classical and quantum stra
gies in games ofPQ penny flipover. Q’s strategy is es-
sentially an error correcting code for bits subject to nois
U3 ­ Us1, 0dUs1y

p
2, 1y

p
2 d reconstitutes an initial state

which is eitherjHl or jT l, whether or not a bit flip error
occurs. In this context, the superiority ofQ’s quantum
strategy over any classical strategy translates to a chan
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capacity [20] of 1, independent of the error rate. In fac
this is a quantum error correcting code [8] for a singl
qubit [21], i.e., any quantum superpositionajHl 1 bjT l,
subject to only bit flip errors and may be compared to th
recent experimental demonstration of phase error corre
tion in a NMR system [22].
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