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Physical Limits to Communication
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The limits posed by physics to the quantity of information that can be transmitted with a certain
amount of power are investigated. The same ultimate limits are found for transmission of information
encoded using matter and massless fields.

DOI: 10.1103/PhysRevLett.93.100501 PACS numbers: 03.67.Hk, 04.70.Dy, 89.70.+c
L / γ

a
A

a
A ρ

L

υ

υ

υ

FIG. 1 (color online). Transmission line for massive objects.
Alice continuously sends Bob information encoded into slabs
of material of cross section A (with largest transverse dimen-
sion a) and rest length L at a speed v. The upper graph depicts
the situation in Alice and Bob’s reference frame where the slab
is Lorentz contracted by a factor �; the lower graph depicts the
situation in the slab frame where Alice and Bob are Lorentz
contracted by the same amount.
How much information can two parties exchange
through a communication channel given certain energy
resources? On one hand, quantum mechanics constrains
the physical resources of any system in its capacity to
store, transmit, and process information [1–4]. On the
other hand, general relativity constrains the amount of
information that can be stored in a finite volume of space
through black hole thermodynamics [5–10]. Here we
study the fundamental limits to the transmission of in-
formation by joining these two approaches: we provide
some arguments which indicate that the ultimate com-
munication rate might be obtained by transmitting infor-
mation encoded into objects on the verge of becoming
black holes. The appeal of our arguments is that they stem
from simple general considerations on information and
entropy in physical systems, which make use of basic
concepts of relativity, quantum mechanics, and informa-
tion theory. On the same lines, a different approach was
recently given in Ref. [7]: there black hole thermodynam-
ics is conjugated with quantum information theory to
obtain bounds on the capacity of channels which are
consistent with the ones we find here.

It is known that no energy need be dissipated in order
to communicate [11]. However, since information must be
encoded in some physical medium, communication is a
dynamical process and always requires a certain amount
of energy to be invested, even in the ideal case of noiseless
transmission. By increasing this energy it is possible to
obtain higher transfer rates since faster dynamics are
achievable and larger spaces of codewords become avail-
able: the purpose of this Letter is to analyze this energy-
rate connection. In our analysis we describe a communi-
cation channel simply as a region of space with transverse
cross section A that connects the sender Alice and the
receiver Bob, who are supposed to share the same inertial
reference frame (see Fig. 1). Assuming that a power P is
employed in the communication task, we show that the
maximum rate R (i.e., the number of bits or qubits trans-
mitted per unit time) is limited by
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where lp �
��������������
�hG=c3

p
’ 1:6� 10�35 m is the Planck

length (G being the gravitational constant). As is custom-
ary in information theory, we leave out of the energy
balance the energy needed by Alice to prepare the signal
and by Bob to decode it.

Channel capacity bound.—Consider the scenario of
Fig. 1: Alice encodes the information into slabs of mate-
rial with rest-mass density � and sends them to Bob
at a speed v. The slabs can be thought of as ‘‘pages’’
written so densely that all the available degrees of free-
dom are employed to store information. From the point of
view of Alice and Bob, each slab of rest length L will be

Lorentz contracted by a factor � � 1=
����������������������
1� v2=c2

p
in the

longitudinal direction. If Alice fills the channel continu-
ously, the time between the arrival of two successive slabs
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FIG. 2. In order to apply the Bekenstein bound (4) we enclose
the channel with overlapping spheres of radius r which are
separated by a distance l (as measured in the rest frame of the
information carriers).
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is � � L=��v�. The average power transmitted is then

P �
E
�
�

mc2�2v
L

; (2)

where m � AL� is the rest mass of the slabs she sends and
E � mc2� is their energy as seen in Alice and Bob’s
reference frame. The information transmission rate is
given by

R � I=�; (3)

where I is the information (i.e., the entropy for the noise-
less case we are considering) contained in the slab. To
estimate the maximum possible I, we employ the
Bekenstein bound [7,9,10], which limits the information
I that can be stored in a spherical volume of space with
radius r on an object with rest energy E. It states that

I �
2�
ln2

Er
c �h

: (4)

The Bekenstein bound, although generally accepted, has
not been derived from basic physical postulates and does
not take into account possible quantum gravity effects. It
assumes that the number of physical fields is limited and
it assumes linearity, i.e., that there is no interaction be-
tween different field species [4,10]. (For further discus-
sions on the validity of the Bekenstein bound we refer the
reader to Refs. [7,12].) However, we can still use this
bound as long as Alice employs a finite number of types
of information carriers (presently only very few different
physical species are known) and if she distributes them
homogeneously in the channel so that in average the
interactions cancel: namely, we consider a mean-field
approach redefining the normal excitations of the channel
as the effective information carriers. In this respect, the
information flows by means of an effective medium made
of independent particles [13]. Clearly this last argument
cannot be applied to the gravitational field, so that, as is
clarified in the following, our treatment holds only for
weakly self-gravitating objects. Moreover, it cannot be
applied also to disordered systems, where the motion is
diffusive rather than ballistic; however, it would be quite
surprising if disorder would allow a more efficient way of
information transfer [13].

For the sake of definiteness, we consider a channel
with circular cross section. Different geometries just in-
troduce numerical factors that do not change the scaling
properties of the capacity. In order to apply the
Bekenstein bound to our channel, as shown in Fig. 2,
we enclose the channel into a collection of overlapping
spheres of radius r �

���������������
a2 � l2

p
, where a is the radius of

the channel and 2l is the distance between successive
spheres (l is a free parameter, which is fixed later to
derive the tightest possible bound). This procedure is
necessary since the Bekenstein bound applies to spherical
volumes. Moreover, chaining the successive spheres to-
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gether is justified since the spheres are weakly interact-
ing: they can be considered independent even if partially
overlapping. Equation (4) implies that the amount of
information �I contained in each sphere is upper bounded
by

�I �
2�
ln2

�mc
���������������
a2 � l2

p

�h
; (5)

where �m � 4
3��
�a

2 � l2�3=2 � l3� is the rest mass con-
tained in the sphere. Equation (5) implies that there is an
amount of information of 4�2= ln2 bits for each Compton
wavelength 2� �h=��mc� that can fit into the radius r. The
spherical covering of the channel of Fig. 2 is overestimat-
ing its volume, since it entirely contains the channel and
the parts in which the spheres overlap are counted twice.
Hence, an upper bound for the information contained in a
slab of length L can be obtained by summing over the
L=�2l� spheres that contain the slab, i.e.,

I �
L
2l
�I: (6)

Replacing Eqs. (6) and (2) into Eq. (3), we find the rate in
terms of the power P as

R �
2�f�l=a�
3 ln2

a2
����������
�Pv

� �h2

s
; (7)

where f�x� �
��������������
1� x2

p

�1� x2�3=2 � x3�=x is a dimen-

sionless quantity that derives from the geometry of the
spherical covering. Since this equation applies for any
values of the parameter l, in order to get the most tight
upper bound we should choose x that minimizes f�x�, i.e.,
x0 ’ 0:82 for which f�x0� ’ 2:54.

It would seem that, even with fixed power P, the upper
bound of Eq. (7) could be arbitrarily increased by increas-
ing the mass density � of the slabs. However, a limit on �
is given by the fact that too massive slabs eventually
collapse to black holes [14] and that our analysis does
not apply in this regime. Whether or not black holes are a
suitable medium for transmitting information depends on
currently unknown features of quantum gravity, in par-
100501-2
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ticular, whether black hole evaporation preserves or de-
stroys information [5–7]. If it preserves information, i.e.,
if black hole evaporation is a unitary process, the black
holes can indeed be used for communication. (Of course,
Bob may have some serious decoding to do in order to
decipher Alice’s message out of the Hawking radiation.)
If, by contrast, black hole evaporation destroys informa-
tion, this is not a suitable medium for communication. In
this case, however, it is still possible to approach arbi-
trarily the above bounds by using systems poised on the
edge of gravitational collapse. This ‘‘black hole commu-
nication’’ limit corresponds to the fact that the Bekenstein
bound is achievable using black holes [9]. A rigorous
treatment of the gravitational effects of the information
carriers would require us to consider the entire geometry
of the communication line. However, to prevent gravita-
tional collapse the simplest requirement we can impose is
that any sphere of radius r0 contains a rest mass smaller
than the Schwarzschild mass c2r0=�2G�, [14]. This is
enough to provide the correct scaling properties of the
capacity bound. For our channel, the Schwarzschild con-
dition translates to

� �
c2

4�Ga2
; (8)

which limits the rate as

R �
2f�x0�
3 ln2

a
lp

���������
v
c
P
�h

s
�

2f�x0�
3 ln2

a
lp

����
P
�h

s
: (9)

This reduces to Eq. (1) since A
 a2 and the numerical
coefficients are of order 1. Interestingly, an analogous

����
P

p

scaling was obtained through a black hole thermodynam-
ics argument in Ref. [7], where it was shown to apply only
in a ‘‘low-power’’ regime. For our model this corresponds
to considering P< c2 �h=a2 which, according to Eq. (1),
represents a transmission rate lower than 1 bit per Plank
time tp � lp=c. Whereas our analysis does not take into
account the thermodynamics of black holes, the analysis
of [7] does not contemplate the possibility that the infor-
mation carriers themselves can collapse into black holes.
In this respect, it is possible that a better understanding of
the communication bound can be achieved by joining the
two approaches.

Notice that our bound (1) depends explicitly on all three
fundamental constants c, G, and h, whereas the
Bekenstein bound depends only on c and h. This is not
surprising since the information rate has the dimension of
time�1: if the rate is to be expressed in natural units [15]
then by necessity G will be introduced from the Planck
time tp dependence on all three constants.

Discussion.—Is the capacity of Eq. (1) achievable? One
needs to saturate the Bekenstein bound (5), the
Schwarzschild condition on the mass (8), and use high
speed v ! c. This corresponds to a highly exotic com-
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munication channel where Alice encodes information
into all the available degrees of freedom of a sequence
of Lorentz-contracted black holes with Schwarzschild
radius equal to the channel width a. Clearly, in this
regime, gravitational effects come into play that might
impede the possibility of achieving the capacity (1).

In deriving the bound, we have used a communication
protocol where massive objects of density � are ex-
changed at a speed v. However, both these parameters
enter in the final expression (7) only through the power P.
This is a clue that such a bound may be applied also to
other regimes, such as the case in which the information
is encoded into massless objects, e.g., electromagnetic
waves. In fact, since both the Bekenstein bound (4) and
the Schwarzschild condition (8) can be extended to all
known quantum fields [10] it is reasonable to assume that
Eq. (1) is indeed a general statement on the maximum
communication rate allowed by nature. Clearly a rigorous
derivation of this bound would require a quantum theory
of gravity which is still beyond our grasp.

A support to our intuition about Eq. (1) derives from
considering the case of photonic communication chan-
nels, where Alice is employing photons to encode infor-
mation. For the sake of simplicity, analyze the case of a
long communication line, where the transverse dimension
a is much smaller than the channel length L. Here Alice
can use only longitudinally propagating modes of the
field (all the others modes eventually exit the channel
and do not reach Bob). The maximum rate she can
achieve is given by [2,3,13]

R �
1

ln2

�������
gN

p �������
�P
3 �h

s
; (10)

where g is the number of orthogonal polarizations of the
field and N is the number of parallel longitudinal modes
that are employed in the communication. The product gN
counts the number of parallel channels employed, since it
is the number of energy-degenerate information carriers
that reach the receiver. In deriving Eq. (10), no general
relativistic effects were taken into account: this means
that such a bound might fail if one considers photons with
a wavelength smaller than the Planck length, where
gravitational effects come into play. Nonetheless, joining
the Bekenstein bound (4) with the Schwarzschild condi-
tion (8) one can give an upper bound to the number of
modes N (i.e., parallel channels) that can fit into the
channel cross section A, as

gN <
A

4l2p
; (11)

which essentially implies that the best Alice can do to
transmit information is to encode it into photons of
transverse wavelength of the order of the Planck length
lp (i.e., on the verge of becoming ‘‘photonic black holes’’).
Notice that Eq. (11) can be interpreted as an instance of
100501-3
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the Susskind holographic bound [7,16]. In this respect, it
limits the number of polarizations and/or bosonic species
g that are allowed by nature, as also assumed in the
Bekenstein bound derivation [10]. Replacing this relation
into Eq. (10) we reobtain the bound (1), which hence
applies also to photonic communication lines.

An important consequence of the bound (1) is the
scaling law of the rate in terms of the number N of
parallel channels used. At least for the optimum case,
the transmission rate for communicating with N parallel
channels always scales as

����
N

p ���������
P= �h

p
. One of the assump-

tions of our calculations was the absence of interactions
among the information carriers. It was pointed out in
Ref. [17] that interactions among fields can be used to
increase the entropy and hence the communication rate.
However, this does not necessarily entail that the
Bekenstein bound can be beaten since one would have
to consider also the energy introduced by the physical
mediators of the interactions [18]. Interactions might help
overcome the

����
N

p
bound only in those communications

scenarios where some degrees of freedom of the available
resources are not used for information transmission but
are used instead to set up a suitable communication line
[19].

As a final remark, we notice that in the case in which
Alice and Bob are equipped with some prior entangle-
ment, the bit rate can be increased, but only by a factor
of 2 [1,20] which does not change the substance of our
bound.

Conclusions.—Starting from a simple communication
model, we have given the bounds that physics imposes on
the communication rate for a channel of cross section A to
which a power P is devoted. We presented separate argu-
ments, leading to the same result, for communication
through the exchange of matter and radiation. A scaling
law proportional to the square root of the number of
channels was found for communicating in the most ex-
treme conditions allowed by nature.
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Pavia, via A. Bassi 6, I-27100, Pavia, Italy.

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, 2000); J. Preskill, lecture notes at http://
www.theory.caltech.edu/people/preskill/ph229.

[2] H. P. Yuen and M. Ozawa, Phys. Rev. Lett. 70, 363 (1993).
[3] C. M. Caves and P. D. Drummond, Rev. Mod. Phys. 66,

481 (1994), and references therein.
[4] J. D. Bekenstein, Phys. Rev. A 37, 3437 (1988).
[5] S.W. Hawking, Nature (London) 248, 30 (1974); Phys.

Rev. D 14, 2460 (1976).
[6] R. Bousso, Rev. Mod. Phys. 74, 825 (2002).
[7] J. D. Bekenstein, Contemp. Phys. 45, 31 (2004).
[8] W. G. Unruh, Phys. Rev. D 14, 870 (1976).
[9] J. D. Bekenstein, Phys. Rev. D 23, 287 (1981).

[10] M. Schiffer and J. D. Bekenstein, Phys. Rev. D 39, 1109
(1989).

[11] R. Landauer, Nature (London) 335, 779 (1988); Appl.
Phys. Lett. 51, 2056 (1987).

[12] R. M. Wald, Living Rev. Rel. 4, 6 (2001).
[13] J. B. Pendry, J. Phys. A 16, 2161 (1983).
[14] R. M. Wald, General Relativity (The University of

Chicago Press, Chicago, 1984).
[15] M. Planck, Sitzungsber. Preuss. Akad. Wiss. 5, 479

(1899).
[16] L. Susskind, J. Math. Phys. (N.Y.) 36, 6377 (1995).
[17] D. N. Page, gr-qc/0005111.
[18] J. D. Bekenstein, gr-qc/0006003.
[19] S. Lloyd, Phys. Rev. Lett. 90, 167902 (2003).
[20] C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881

(1992).
100501-4


