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Abstract

Adiabatic quantum computation has recently attractediétte in the physics and computer science
communities, but its computational power has been unkndie settle this question and describe an
efficient adiabatic simulation of any given quantum aldorit which implies that the adiabatic com-
putation model and the conventional quantum circuit modelmolynomially equivalent. Our result
can be extended to the physically realistic setting of pkediarranged on a two-dimensional grid with
nearest neighbor interactions. The equivalence betweemtudels provides a new vantage point from
which to tackle the central issues in quantum computatiamely designing new quantum algorithms
and constructing fault tolerant quantum computers. Iniagr, by translating the main open questions
in quantum algorithms to the language of spectral gaps akspaatrices, the result makes quantum
algorithmic questions accessible to a wider scientific enick, acquainted with mathematical physics,
expander theory and rapidly mixing Markov chains.
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1 Introduction

Quantum computation has emerged in the last decade as dm@yarid promising direction of research
due to several breakthrough discoveries. Shor’s quantgoritim for factorization [1], followed by sev-
eral other algorithms to solve algebraic and combinatgriablems (see, e.g., [2-5]) have demonstrated the
possible exponential advantage of quantum computing rsgsteer classical ones. These discoveries moti-
vated interest in the physical implementation of quantumatation, resulting (to date) in the realization
of small-scale quantum computations in various systeme €g., [6—12]). The field now faces two major
challenges. The first is to extend the capabilities of quardigorithms, and in particular, to come up with
substantially new algorithmic techniques which go beydmmain quantum tool: the Fourier transform.
The second is to improve the current experimental and tkieatanethods [13] of protecting the com-
putation against decoherence and errors, thereby aduyabs main stumbling blocks in the realization of
large-scale quantum computers. Recently, Farhi et allBl4uggested an ingenious paradigm for quantum
algorithms callecdiabatic computationwhich attracted considerable attention [14—21] sinceas shown

to exhibit promising algorithmic capabilities [16—18], @well as inherent robustness against decoherence
and control errors [20].

In the adiabatic paradigm, a combinatorial problem is raphd as the problem of finding the lowest
energy state (namely, tlggound statg of a “target” HamiltonianHy,,,; (2 Hamiltonian is simply a Hermi-
tian matrix). For the Hamiltonian to be physically realistive require that it idocal, i.e., involves only
interactions between a constant number of particles. M@gbke combinatorial problem, a quantum system
is initialized in the ground state of an initial local Haroittian H;,;;, and thenH;,;; is slowly transformed
into Hgna- A celebrated theorem from physics called the quantum atl@atheorem [22,23] implies that if
the transformation is carried out sufficiently slowly, thestem tracks the ground state of the time varying
Hamiltonian and therefore ends up in the desired groune stiakl;,..;. Indeed, if the spectral gap of the
time varying Hamiltonian is never too small then the entirecpss can be carried out efficiently. Adia-
batic computation can therefore be viewed as a processatkes & quantum state to another. We remark
that previous research in the area followed [15] and focusethe case wherély,,, encodes a classical
optimization problem and so is diagonal. This means thafitta state is a basis state. We observe here
that the relevant and natural model from a physical pointieivwdoes not require this. Using the same
physical resources (namely, local Hamiltonians) one cauedlg adiabatically generate much more compli-
cated superpositions. Adiabatic computation is thus vikasea process that takes a tensor product state to
a (possibly more general) quantum superposition.

The focus of this paper is the characterization of the coatmrial power of such adiabatic computa-
tions. [21] began to address this question when they shomatdhtrelated model to adiabatic computation,
which usedsimulatableHamiltonians (i.e., Hamiltonians which are given non esigy as the result of
applying sequences of quantum gates) is as powerful as miional quantum circuits. [21] left the main
guestion of universality of adiabatic computation with pleglly realistic (namely, local) Hamiltonians,
open. This model might seem at first sight less powerful thandard quantum computation, because of
the local, almost explicit, specification of the final statedeed, previous results gave only partial answers
regarding the computational capabilities of this modeh] [dsed adiabatic computation to tackle an NP-
complete problem. There is mounting evidence [17, 19, 2] tthe algorithm of [15] takes exponential time
in the worst case for such problems. [19, 25] showed thatbatiacomputation can implement Grover's
guantum search algorithm [26], and [16—18] showed thatbadiia computation can 'tunnel’ through wide
energy barriers and thus outperform simulated annealigcliassical counterpart of the adiabatic model.
These results demonstrated polynomial speed-ups of diiaioanputation over general classical search al-
gorithms?t. From the other direction, [15] imply that adiabatic congtian is not stronger computationally

n fact, [16, 17] even demonstrated an exponential speeokggliabatic computation over classical local search itlyos



than the standard quantum model. Where exactly does thieaditianodel sit on the scale between polyno-
mial advantage over classical computation, and the fulhtjua computational power, was unclear. In fact,
even the question of whether adiabatic computers can siengkneraklassicalcomputations efficiently
was unknown.

1.1 Results
Our main result clarifies the picture. We show:

Theorem 1. The model of adiabatic computation with local Hamiltoniamslving three qubit interactions
is polynomially equivalent to the standard model of quant@mputation.

This shows that universal quantum computation can be ftligied and implemented in the adiabatic
framework, and so adiabatic computation can be thought afi adternative model to quantum computation.

We also show that a similar theorem holds when we relax theinement that the Hamiltonians be
local, and allowsparseHamiltonians. These are Hermitian matrices which have &t paynomially many
non zero elements at each row and column, where we also ectiait the matrix i€xplicit, namely each
element can be computed efficiently given its indexes. Wevsho

Corollary 2. The model of adiabatic computation with sparse Hamiltosienpolynomially equivalent to
the standard model of quantum computation,

Corollary[2 is potentially more useful in the context of aifuns and complexity, since sparse Hamil-
tonians seem to be mathematically easier to handle thahdnea. One direction follows immediately from
Theorentll by observing that local Hamiltonians are in paldicsparse. The other direction, namely that
adiabatic computations with sparse Hamiltonians can balated efficiently by standard quantum comput-
ers, follows from the implementation of sparse Hamiltosiasing quantum circuits presented in [21].

From the algorithmic point of view, these result show thatgalantum algorithmic questions can be
framed in the language of eigenstates and spectral gapsalfdo even sparse Hermitian matrices. The
design of quantum algorithms can thus draw on the wide sfieliterature on these fundamental objects,
in particular expander theory [27], rapidly mixing Markolhains (see, e.g., [28, 29]), and mathematical
physics. This raises the hope that tools from these aredst igyuseful to tackle the difficult challenge
of designing new quantum algorithms. Indeed, probabiligory was already used in analyzing spectral
gaps of Hamiltonians (see, e.g., [30] and references theasiwell as the proofs in this paper). In addition,
we note that the adiabatic model appears ideally suitechéotask of quantum state generation, which was
shown recently to be essential for many important quantgordhmic problems [21].

As for experimental applications, our result shows thaversial quantum computation can in principle
be implemented adiabatically. We bring the model one stegeclto physical realization by showing that
adiabatic computation with a more physically realisticafddamiltonians is also quantum universal:

Theorem 3. The model of adiabatic computation with two-body nearegjhimr Hamiltonians operat-
ing on six-state particles set on a two dimensional grid, as/pomially equivalent to standard quantum
computation.

Experimentally realizing quantum computation using thialaatic model has potential advantages from
the point of view of fault tolerance, i.e., reliable comgiga in the presence of noise. [20] argues that if
adiabatic computers were cooled below the Hamiltonian&srgyngap, decoherence could essentially be
ruled out. Furthermore, [20] studies the effect of unitaoytcol errors in the Hamiltonian and conclude
that such errors might, in fachelp the adiabatic computation. Our result combined with thegdieas

—such as simulated annealing— though the problem of [16cad]be solved efficiently by other classical methods.



indicates that the possibility of fault tolerant adiabatmmputation deserves to be further studied, both
theoretically and experimentally. Experimental realabf small-scale adiabatic computation was already
demonstrated [31].

Finally, we consider further the possible relevance of theve results to fault tolerance. If the Hamil-
tonian of the adiabatic evolution leaves a certain subsjyaegiant, it actually suffices to lower bound the
spectral gap of the Hamiltonianestrictedto that subspace. (This is the case in Subsefidn 3.1) Howeve
the full spectral gap, namely the gap in the entire Hilbert space, beaynportant in the context of noise,
especially thermal fluctuations (see [28])t turns out that

Theorem 4. The above results hold with Hamiltonians with inverse poigral “full” spectral gap.

1.2 Keyldeas

Given a quantum circuit [35], we associate with it a corresjilog adiabatic computation. Without loss of
generality we will assume that the input to the quantum dirmansists of, qubits all initialized t0]0)'s 3.
Then, a sequence @funitary gatesl/y, . .., Uy, each operating on one or two qubits, is applied to the state.
The system’s state after tiith gate is|«(¢)). The output of the quantum circuit is in general a complidate
quantum statéx (L)) of n qubits, which is then measured in the standard basis.

A natural attempt to design an adiabatic computation thatios the circuit's computation would be
to defineHg,,) to be a local Hamiltonian withx (L)) as its ground state. This poses a difficulty: we want
to explicitly specify the Hamiltoniarwithout knowingthe complicated output of the quantum circuit in
advance.

The key to solving this problem is based on an idea by Kita®} ghd Feynman [37]. Instead of
designing a Hamiltonian that has the final unknown state etifcuit as its ground state, a task that seems
impossible, one can definég,,; to be alocal Hamiltonian whose ground state is the entiistory of the
guantum computation, isuperposition

® [1f0Fe. 1)

n) = \/L:Jrl ZZ::O la(£))

The right (L qubits) register is a clock which counts the steps by adtiifgom left to right. The superscript
c denotes clock qubits. For simplicity, dendte) := |a(¢)) ® [1°0%~¢)¢. Kitaev [36] defined a Hamiltonian
Hjg,,) involving five body interactions (three clock particles ane computation particles) that hag as
its ground state. The idea is that the unary representafitre@lock enables a local verification of correct
propagation of the computation from one step to the nextth®initial HamiltonianH,,,;; we require that

it has|yp) as its unique ground statél (¢) is taken to be a convex combination 8f,;; and Hey,.

A technical problem lies in showing that the spectral gaphefintermediate HamiltoniaH () is larger
than1/L?. To do this, we use a mapping of the Hamiltonian to a Markourcharresponding to a random
walk on the time steps. We then apply the conductance bowma fihe theory of rapidly mixing Markov
chains [28] to bound the spectral gap of this chain. We nateithgeneral, applying the conductance bound
requires knowing the limiting distribution of the chain, st in our case is hard since it corresponds to
knowing the coefficients of the ground state at all times. Wumvent this problem by noticing that it is
actually sufficient in our case to know very little about timeiting distribution of the Markov chains, namely
that it is monotone (in a certain sense to be defined latehis dllows us to apply the conductance bound,
and deduce that the spectral gagligl/L?). From this is follows that ifl’ > L?, the adiabatic system

2The importance of non-negligible spectral gaps to faukermice appeared already in geometric and topological gumant
computation [32-34]. Note that these models differ fromabédtic computation in that the entire computational spaethe
same energy, and hence the spectral gap is irrelevant fratgarithmic point of view

30therwise, the first. gates can be used to flip the qubits to the desired input.
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will end up close to the history statg). Extracting the output of the quantum circuit from the higtstate
efficiently is easy: Measure all qubits and if the clock is tates|1'), the computational qubits carry the
result of the circuit. Otherwise, start from scrafch

This scheme would not suffice to prove Theofdm 3. The basldgmolies in arranging sufficient inter-
action between the computational and the clock particlasedf the particles are set on a grid, each clock
particle can only interact with four neighbors. We circumivtehis problem as follows. Instead of having
separate clock and computational particles, we now assigra¢h particle both clock and computational
degrees of freedom (this is what makes our particles sbtestaWe then construct a computation that prop-
agates locally over the entire set of particles, snakingngpbdmwn each column of the lattice. The adiabatic
evolution would now end up in the history state of this snkfke-sequence of states.
Organization of Paper: In Section® we describe the model and state some relevastdhout Markov
chains. Sectiofil3 shows how adiabatic systems with localilttamans allowing five- and later three-body
interactions, can simulate efficiently conventional quamtomputations. Sectidh 4 shows how to adapt the
construction to a two-dimensional grid. We conclude witempuestions.

2 Preiminaries

2.1 TheAdiabatic Computation Model

For background om-qubit systems, quantum circuits and Hamiltonians, seg¢ [8®nsider a quantum
system composed of particles, governed by Schrodinger’s equationn % [v(t)) = H(t)[y(t)). H(t),
called theHamiltonianof the system, is a Hermitian matrix. It's eigenvalues atkedaenergies. We require
that H (¢) is local, i.e.,H(t) = >_ , H(t) where A runs over constant size subsets of the particles, and
HA(t) operates trivially on all butl (i.e., it is a tensor product of a Hamiltonian anwith identity on the
particles outside ofl). The system is initialized in a tensor product state, ttmigd state (lowest energy
eigenstate) of the initial HamiltoniaH;,;; = H(0). One then slowly modifies the Hamiltonian over a time
of lengthT" from Hiy;y t0 Hena = H(T) by settingH (t) := (1 — t/T)Hinit + (t/T") Hnal (from now

on we uses = t/T). In the limit of largeT we are guaranteed by the adiabatic theorem [22, 23] that the
final state will be very close to the final ground state. Just kavge T' should be is determined by the
spectral gapof the time dependent Hamiltonidt (s), denotedA(H (s)), which is the difference between
the Hamiltonian’s lowest and next to lowest eigenvalue. dmecisely, the adiabatic theorem requires that

S Al )
minse[o,l]{Az(H(S))} .

In fact, if there exists a subspacesuch thatH (¢) leavessS invariant for allt, and the initial groundstate
belongs taS, then it is sufficient that the above condition holds fé(t) restricted taS. For the adiabatic
algorithm to be efficient, we require thdt is polynomial inn, i.e., bounded by:.© for some constant
c. Typically, the norm offﬁg is bounded by some small constant (2, in the cases we study)th&vefore
require that for alk € [0, 1] the spectral gapA(H (s)) are at least /n° for some (preferably small) constant
c. If this condition holds, the final state is close to the gebstate ofHg,,.;, which can be thought of as the
outcome of the computation. In the end, the particles aresured to give the result of the computation.

2.2 Markov Chainsand Hermitian M atrices

Under certain conditions, there exists a standard mappirgeamitian matrices to Markov chains (i.e.,
stochastic matrices). Lét be a Hermitian matrix operating on @dnt+ 1 dimensional Hilbert space. Assume

4This gives an overhead factor &f which can be avoided by adding, sag. identity gates to the quantum circuit at the end,
so that most of the history state is concentrated on the fiatd|g(L)))
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that all the entries oz are non-negative. Consider the eigenvedtas, . .., o) of G, with the largest
eigenvalueu. Assumey, > 0 anda; > 0 for all 0 < < L. We can now define the matrik by:
s
P = J Gii. 3
! j2les; ! ®)

P is well defined and is stochastic because all its entries @menegative and each of its rows sums up to
one. It is easy to verify the following fact:

Fact 1. (vo,...,vr) is an eigenvector of with eigenvalued if and only if (agvy,...,arvr) is a left
eigenvector ofP with eigenvaluey/ .

We will consider Hermitian matrices of the foréh = ¢I — H for some constantand some Hamiltonian
H. The above fact implies that ffv, . . . , ) is the groundstate dff with eigenvalue\ then(a3, ..., a?)
is the limiting distribution ofP (i.e., left eigenvector with maximal eigenvalue 1), anddhe betweer’s
largest and second largest eigenvalues is equal(d)/(c — A). Another useful fact is the following; its
proof is based on the Perron-Frobenius theorem:

Fact 2. [38] Let G be Hermitian, with non-negative entries, aBtl < oo s.t. all entries ofG* are strictly
positive. TherG's largest eigenvalue is positive and non-degenerate. blee all entries of the corre-
sponding eigenvector are positive.

2.3 Spectral Gaps of Markov Chains

Numerous techniques were developed to bound the specgtrafgaviarkov chain matrix, as it is related [29]

to the important quantity of thmixing timeof the chain. In this paper we use the conductance bound [28].
Given a stochastic matri¥ with limiting distribution 7, and a subseB C {0,..., L}, the flow from
Bis given by: FI(B) := 3 ,cp ;¢ p mil%;. For eachB, define ther-weight asm(B) := .z m. The
conductancef P is defined by

_ F(B)
p(P) = min w(B)’
where we minimize over all non-empty subs&s {0, ..., L} with 7(B) < 1.

Theorem 5. (The conductance bound [28]): The eigenvalue gap a? is > %go(P)2.

3 Equivalence of Adiabatic and Quantum Computation

We show here how to simulate a quantum circuit withwo-qubit gates om qubits by adiabatic computa-
tion onn + L qubits. The initial ground state in the adiabatic evoluti®fy,) = |0™) ® |0), and the final
state is, as explained in the introduction, thistory state defined in Equatidd 1. We start by allowifinge
qubit interactions, and later show how to reduce it to three.

3.1 Universality of Adiabatic Computation with Five Qubit Interactions

3.1.1 TheHamiltonian

We would like to define a Hamiltoniaf;,;; that has as its ground stdtg), andHy,,,) that has as its ground
state|n). To do this, we construct local Hamiltonians which “checkat the ground states are the correct



ones, and assign energy penalty whenever this is not the Tagefollowing Hamiltonian checks that the
clock’s state is indeed = 0 in the beginning

Hclockinit = ‘1> <1’§7

where the subscript indicates which clock qubits the pteacperates on. We also defiig. ., which
checks that the clock’s state is always of the form166~—¢)¢ by assigning an energy penalty to any basis
state on the clock qubits that contains the sequéce

L—1
Huoox = Z |01><01|Z€+17
=1
The ground spacé of H. is spanned by exactly those states that represent a legil sfate. Next

considerH;,p,t, Which checks that the input of the computational qubitslligeroes, by penalizing all
states with clock staté= 0 whose computation qubits are not all zero:

n
Hinput = Z |1><1|Z ® |O><0|§
=1
We define:
Hinit = Hclockinit + Hinput + Hclock (4)

Claim 6. |vy) is a ground state off;,,;; with eigenvalue.

Proof. The fact thatH,;|vo) is easy to verify. All eigenvalues dff;,;; are non negative since all terms in
Hi,;; are positive semi definite. O

Hsna is defined by checking that the propagation from gtepl to £ is correct, i.e., corresponds to the
application of the gaté/,:

L

1
Hﬁnal = 5 Z Hé + Hinput + Hclock (5)
/=1

where forl < ¢ < L, the following Hamiltonian corresponds to the desired &hec

I®[100)(100(_; p oy — Ur®|[110)(100[5_; ;444

Hg = ¢ ¢
~Uf @ [100)(110[G_y gy + 1@ [110)(LI0[7_1 4 o1y

(6)
The three-qubit terms i&/; can be seen d8)(I|, |l — 1)(l — 1|, |I){l — 1] and |l — 1){I| respectively, i.e.,
corresponding to moving one step forward or backwards. k@bbundary cases= 1, L, we omit one
clock qubit from these terms:

Hy = 1@ [10)(10}15 + 1 ® |00)(00]12 — Uy @ [10)(00]1.0 — U} @ [00)(10]1 5 @)
H, = I® ‘11><11’L—17L +I® ’10><10‘L—1,L -Ur® ‘11><10’L—1,L — Uz X ’10><11‘L—1,L-

We remark that for the results in this subsection (and onighithe termsi o and Hi,py¢ can be com-
pletely omitted. We introduce them here for the sake of @ascy with the rest of the paper.

Claim 7. |n) is the ground state offg,,,; with eigenvalue).

Proof. Same as that of Claifd 6. O



3.1.2 TheSpectral Gap

It remains to show that the spectral gapifs) is non-negligible. It is easy to verify that:

Claim 8. The subspacéy, spanned byyo), . .., |yz) is invariant underH (s), i.e., H(s)(Sp) C Sp
Hence, by Subsectidn 2.1, TheorEim 1 follows from

Claim 9. A(Hs,(s)) = Q(L~2) forall s € [0,1].
(Here and later we use the notatiéhy to denote the Hamiltonian restricted to a subspdcde

Proof. Let us write the Hamiltonian$fs, init and Hs, sina1 in the basisyo), ..., |vr) of So. Heloek and
Hinput are0 onSy and can thus be ignored. We have the follow{idig+- 1) x (L + 1) matrices:

00 ... 0
01 ... 0
HSo,init = : : . : ) (8)
0 0 1
Hsyfmal = 317000l — $ho)(ml — 3o (ve—al + $lve) (el

T

1

+ ) (=3l + )l = 31 ()

g

[N

0 0

-
|

o Nl= (S
|
[N

[N
—
|
[N
o

= S ©)

o -1

ol

0

[N
|
NF= o

We now lower bound\(Hs, ). We consider two cases:
Thecase s < 1/3: Here,Hs,(s) is sufficiently close td{s, init Which has a spectral gap of and we can
use standard techniques (Gerschgorin’s Circle Theorefh {88how that the gap aofi s, (s) is larger than
1/3. LetR; = ., |Hs,(s)ij|. The Circle Theorem states that for eacthere is an eigenvalue in the
disk of radiusR; aroundHg,(s);;. Fors < 1/3, Hs,(s)oo < 1/6 andRy < 1/6, so the corresponding
eigenvalue is less thary3. Similarly, we obtain that the eigenvalue correspondingftg(s)r, 1, is at least
2/3. Forall0 <i < L, R; < 1/3, andHg,(s);; = 1, and so the remaining eigenvalues are also at least
2/3. Hence the gap is larger thamp3.

Thecase s > 1/3: We note thatH s, sna iS the Laplacian of the simple random walk [29] of a particte o
aline of lengthL + 1. A standard result in Markov chain theory impli&§ Hs, fna1 = 2(1/L?) [29]. For
large enoughs, the matrix has enough weight of a random walk to apply Markmain techniques.

Let (ayp,...,ar) bethe ground state @1 s, (s) with the eigenvalué@\.. Since the spectral norm éfs, (s)
is at most2, X is at most2 in absolute value. Define the Hermitian matéiXs) = 4/ — Hs,(s). Clearly,
G(s) has non-negative entries and for large enoiglall entries ofG/(s)* are strictly positive. Hence,
following Factl2, we obtain that the largest eigenvalue- 4 — \ of G(s) is positive and non-degenerate
and the corresponding eigenvectoy, . . ., o) has positive entries. We can now map the matiix) to a
stochastic matriX’(s) as described in Subsectibnl?.2. The transition ma(ix) describes a random walk
on the line ofL + 1 sites:
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Figure 1: The random walk correspondingRos)

Fact 3. For all s > 0, the ground state afl 5, (s) is monotone, namelyy > a; > ... > oy > 0.

Proof. It is easy to check thafi(s) preserves positivity and monotonicity, afd, ..., «yr) is the limit
of the application of7(s)/u on the monotone vectdd, . .., 1) infinitely many times. (This is because all
other eigenvalues @¥(s) are strictly smaller thap in absolute value, so their contribution decay8.jo [

Hence, the limiting distribution of’(s), 7 = (a3,...,a%), is monotone. We use this and simple
combinatorial arguments to prove the following claim, thegd of which can be found in Appendix] A:

Claim 10. ¢(P(s)) > 35

By Theorenib, we have that the spectral ga@6f) is larger tha e ?(L+1) . We have by Subsection
22 thatA(Hs,) > m Finally, notice thaj, = 4 — \ > 2 since\ < 2. O
Remark In fact, we can prove a lower bound on the full gay{H (s)) = Q(L~3), using the terms7 o
and Hipnpu- The proof follows the first part of the proof of Clalml11 andrmitted here.

3.2 From Five Qubitsto Three

To move to three-body interactions, we modify in EquationdI8]7, by leaving in the expressions corre-
sponding to clock qubits only those terms which corresportti¢ current time stefi

Hy =1 [0)(0] — Ur ® [1)(0]7 — U] @ [0)(1[§ + I ® [1)(L]5. (10)

This introduces terms in the Hamiltonian which interactwesn legal and non-legal clock states, and so
H(s) no longer leaves the subspaSginvariant. To this end, we assign a much larger energy petalt
states outside of the legal clock states. Set O(L?) and define:

L
1
Hi/nit = Hclockinit +J- Hclock + Hinput 5 Hilinal = 5 Z Hé +J- HC]OCk + HiHPUt (11)
=1

Clearly, the new Hamiltonians have the same ground staté®eadd ones. Theoreh 1 follows from:
Claim 11. A(H'(s)) = Q(L~3) for all s € [0, 1].

Proof. (Sketch. See appendix.) The proof builds on the proof ofr@Ej with two additional ideas. First,
we restrict attention to states with legal clock states, states irS, and observe that the Hamiltonif; (s)

can be block diagonalized, where one of the blocks is exaf#y s) from Claim[®. We show that the lowest
eigenvalue in the other blocks L~3) because oH,put Which is non zero there. This shows the desired
spectral gap fo{(s). SincesS is not invariant, we need to consider states outsids.ofVe use similar
ideas to those used in [40] in the context of quantum NP-cetagiroblems: since the energy given to states
outside ofS by H., is at least/, they cannot appear in the ground state of the Hamiltonidh large
weights, and the interaction with them does not effect theeteenergy states that much. O



4 Two-Body Local Interactions on a Two-Dimensional L attice

In this section we prove Theordrh 3. First, assume withostdbgenerality that the quantum circuit consists
of R rounds, where each round is composea giates (some can be the identity gate), as in Figlre 2. This
can be done by introducing extra identity gates.

o ——0F

)
)

) -
)

Figure 2: The first gate in each round is a one-qubit gate eghipdi the first qubit. Foir = 2, ..., n, thei'th
gate is a two-qubit gate applied to qubits 1 ands.

The adiabatic computation is performed élimensional particles, arranged on a two-dimensional
square lattice wit, rows andR + 1 columns. Each column will correspond to a round of the cosjr
of the circuit. The six internal states of each particle aveldd to four groups, corresponding to four “clock”
degrees of freedom: “unborn’(), “first phase”l(D), |D), “second phase”|®), |®), and “dead™)).
The two “first phase” states and two “second phase” statesgqmond to computational degrees of freedom,
namely to the “zero” and “one” state of a qubit. We wii@®) (and similarly|@)) to denote a general state
that belongs to the subspace spanned®yand|Q)).

We now define the statds;). See Figur&l4 for illustration. Once agajn,) corresponds to the g)
input to the quantum circuit. Here, it is the state in which particles in the leftmost column are [if))
whereas the rest are “unborn)). |y,) transforms tdv,.1) by changing the particles on the lattice in
the following order (which resembles a propagation of a ejakrst, we modify the particles in the left
most column from top to bottom, by applying the first round @inputation on their internal qubit degree of
freedom, while simultaneously changing the particle’sesteom a first-phase state to a second-phase state.
Once we reach the last particle in the column, we start moumghe same column, copying the qubit’s
state of the particle one site to the right, leaving the abpierticle in the “dead” phase, while the particle
to the right is now in its first phase. When we reach the toprmasicle in the column, all particles in this
column are dead and the particles in the next column are feadlge next round of computation. Finally,
in |yz) all columns but the last one are “dead”, and thgubits in the right column are in the superposition
corresponding to the final state of the quantum circuit, ite superposition obtained by mappigto (D
and|1) to (D. We getL = 2(R + 1)n states (two for each site in the lattice), plus the initiatest

As in the non-geometrical adiabatic computation, we nowthsed~,) to define the initial and final
groundstates: the initial groundstate of the adiabaticmdation is|y,) and the final one is the history state

) defined byln) = —L= 57 [7(0)).

41 TheHamiltonian

The notion of a legal clock state now means a state whose diegiees of freedom has the sashapeas
one of the states in Figuké 4. The following claim is easyfigiion (see also Tablé 1).

Claim 12. A state ofn x R + 1 six state particles setin am x (R + 1) grid is of one of the shapes as in
Figurel2 if none of the following forbidden configurationspapr in the state:

O, O®, OR: O, BR, ®O, OO, O®, ®D, @D

O 0 ®& O © 0O ® & Q
@O ® 0k '® 000D



We define a two body nearest neighbor Hamiltonian which ésltihe above configurations. For exam-
ple, if the rule forbidsA = (4, j) in state( to the left of B = (i, j + 1) in state), then the corresponding
term in the Hamiltonian ig|O), ®)(O, ®|)4,5. Summing over all the forbidden configurations in Claim
[I2 applied to all pairs of particles, We have

Hclock = J Z Hr
rerules

whereJ = O(L™?). Hinput Checks that none of particles in the leftmost column are]ix:

n

Hinput = Z (|CD><®|)Z71

=1
We can now define the initial Hamiltonian to be:
Hinit = (I_ |CD><®| - |®><®D1,1 + Hinput + Hclock'
The first term checks that the top left particle is if(a) state. ForHg,,; we have:
L

1
Hﬁnal = §ZHZ + Hinput + Hclock'
/=1

As before, the termg#/, check the propagation frofny) to |y,41). Since|,) differs from |y,.1) only in
two adjacent lattice sites, this is a two-body nearest fmighklamiltonian. There are two types of steps: an
“upward” step and a “downward” step, and thtg := H ,f“) + H éd). For the upward step, in which all that
is supposed to happen is that the particle moves to the nghtaes not change its internal qubit state, the
Hamiltonian is:

Y = 1®.0)(® 0l +®.0/(®.0l - I® O)®. Ol - |®.ON®. O +

Q. OHX, Dl + @, OND, Ol = &, D)@, Ol - |®, ONK, D-

where the left particle is followed by the right particle. €lfirst line corresponds to changing the state

|®, ) into |Q), D). The second line is similar fdd, O) and|), D).
For the downward stepH/ éd) needs to check that a two-qubit gate is applied correctly.défote the
upper particle involved in this gate first, followed by thevkr particle in the gate. Restricted to the four

@, (D) states and to the fouf®, @) states,H " is the following8 x 8 matrix:

@ ._ r -Uu
w0 - (1Y)

(cf. Equatiorb); everywhere els‘ééd) is zero.

The HamiltoniansH, for the edge cases, i.e., the top most and bottom most gartifleach column,
are defined similarly, where the only difference is that tihgt fjate of a round in the quantum circuit is a
one-qubit gate, and sH, operates only on one particle. Formallylifis the corresponding gate, we define

H; as thed x 4 matrix
1 -U
H = ( —Ut I >

operating on the two statég)) and the two statelgd)). It is easy to check that
Claim 13. |yo),|n) are the ground states dfi,it, H finai, respectively, with eigenvalués
It remains to prove that the spectral gap is non-negligible:
Claim 14. A(H(s)) > 1/L3 for all s € [0, 1]
Proof. The proof is essentially identical to that of Cldind 11. Ndtatthere tos is not invariant. O
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5 Conclusions and Open Questions

This paper demonstrates that quantum computation, itsgitre and weaknesses, can be studied and im-
plemented entirely within the adiabatic computation mpdéthout losing its computational power. These
results raise many open questions in various directions.tlBaconnections to new pools of techniques, in
particular Markov chain Monte Carlo methods and adiabatidutions, be helpful in improving our under-
standing of the computational power of quantum systemsjraddsigning new algorithms? An important
intermediate question is to try to understand known quardlgurithms in the adiabatic language; as we
showed all known algorithms have efficient adiabatic regmésions.

A full fault tolerance theory for the adiabatic computatimodel is yet to be developed. In particular,
experimental study of the susceptibility of adiabatic catagions to decoherence and errors might be of
great importance. Improving the parameters presentedsinviirk, and in particular, making the simulation
of quantum systems by adiabatic evolutions linear instégmblynomial, as well as decreasing the dimen-
sionality of the particles from six to two or three, might berywimportant for implementation applications.
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A Proof of Claim[I0

For the proof, we consider two cases, depending on whetbesefB contains) or not.

e If 0 € B: Letk be the smallest index such thiaE B butk+1 ¢ B. Clearly,F'(B) > m, P(s)i k+1 =
o+ 1G(8)kk+1/(4 — A). We bound each of these terms. We haye 1, a > \/2(2—+1) since by

m(B) < 3 and the monotonicity ofi?, we have the bound < o7, + -+ a2 < (L + 1)a2,,.
Also, using the definition of and the assumption that> 1/3 we get thatG/(s)s 11 > % which

gives the lower bound’(B) > WI)(LH) and sinc& <4 -\ <6, F(B)/x(B) > WIH)
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e If 0 ¢ B, we letk be the smallest index such that¢ B butk + 1 € B. Because of the
monotonicity ofa?, we know thatr(B) < ai,, +--- + af < ai, (L + 1). Again, we have
F(B) > Oékak_,_lG(S)k’]H_l/(Zl — )\) and henceF(B)/w(B) > %Oxkak+1/((4 — )\)CY%_H(L + 1)) >

6(4—)\§(L+1) = 36(L1+1) .

Together these show the desired bound.

B Proof of Spectral Gap For Three Qubit Interactions

Here we prove Clairid1. We first considBis(s). From now on we omit the prime. This Hamiltonian is
block diagonal as in Figuld 3.

Figure 3: The Hamiltoniad# (s) can be block diagonalized as above.

In the first subspace iS, we get exactly the same Hamiltonian which we have dealt wit@laim[9.
In addition, we have many subspaces, dendigdvhich can be viewed as the analogues@fS, consists
of the set of states which the quantum circuit reaches istpftom the all zero inputS; consists of the set
of states which the quantum circuit reaches starting fromy'th input, i.e., then bit binary representation
of j €{0,...,2" — 1}. TheS;'s spanS. We first show

Claim 15. The spectral gap ofls(s) is Q(1/L?).

Proof. By Claim[3, it suffices to argue that the energyrhf (s) on each of theS; for j # 0 is at leastl / L3.

This is true because of the penalty assignedHy,.:, but the argument is slightly subtle sinég,, ;.

applies only for the first clock’s state. We haﬂe;j(s) = Hg,(s) + Hs; input- Hs; input IS diagonal, with
its top left element at leadt (it actually equals the number @fs in the binary representation ¢ and all
other diagonal elements are zero. Hence, we can lower bbenground energy alis, (s) with the ground
energy of the Hamiltoniai#/s, (s) + H' where

10 ... 0
o 00 ... 0
00 ... 0

We can now use a geometrical lemma by Kitaev (Lemma 14.4 i) {B&t bounds the ground energy of
the sum of two Hamiltonians. It states that if the spectralsgaf both Hamiltonians are larger than and
the angle between the two ground spaces then the ground energy of the sum is at l€astin?(0/2). In
our case, the spectral gaps &€.?) by Claim[®. Moreover, the angle between the ground statésfieat
cos(f) < 1 —1/L by the monotonicity of the ground state Hfs, (s). It follows that the ground energy of
Hs,(s)isQ(1/L?) for all S; with j # 0. O

14



We now want to consider the entire Hilbert space, includiades outside of,. We use similar ideas
to those used in [40] in the context of quantum NP-completblpms. The following lemma allows us to
eliminate the interaction betweghand its orthogonal space which we dengieand essentially consider
only the Hamiltonian restricted to the spagevhile ignoring theF space completely. Once restricted to the
spaceS, the spectral gap analysis follows from Cldin 15.

We would like to say that since the energy given to state% iis so high, they cannot appear in the
ground state of the Hamiltonian with large weights, and tieraction with them does not effect the lower
energy states that much. This is captured by the followingeg® lemma, where we assume thatthe
penalty for being in the forbidden subspace, is much larhan the size of the interaction between the
forbidden subspace and the valid subspdgen the following upper bounds this interaction, and thus we
assume/ > K in the following lemma.

Lemmal6. LetH = H,-+ H> be the sum of two Hamiltonians operating on some Hilbertspae= S+ F.
The HamiltonianH> is such that all its eigenvectors are inside eitldeor F. Moreover, the eigenvalues of
eigenvectors i are 0 and those of eigenvectors fare at least/. Also, assume thatH; || < K for some
K > 1. Assume that the HamiltoniaHs 1, i.e., the restriction offf to the spaceS, has an eigenvector
|n) € S with eigenvalue 0 and all other eigenvectors are with eigames at least 1. Then, the Hamiltonian
H has an eigenvectdr;’) with eigenvalue at most 0 such thdy') — |n)|| < 8K3/4/.J'/* and all other
eigenvectors are with eigenvalues at least 70K°/2/+/J.

Proof. Any vector|v) € H can be written af) = a1|v1) + aslvg) With |v1) € S, |v2) € F, a1, a2 € R,
ap > 0andad + a3 = 1.

Fact 1: w|HJo) + K
2 o (WH +
Qy >~ 7J
Proof: (v|H|v) > (v|Hslv) — ||H1|| > Ja3 — K.
Fact 2:
(v|Hv) > (vi|Hy|v1) — 4K |az|

Proof: Write

(v|H|v) (v|Hilv) = (1 — a%)(v1|H1|v1> + 2019 Re(vy | Hy|vg) + a%<v2|Hl|v2>

>
> (v|Hilvr) — K(203 + 2|az))

usinga; < 1. The result follows witHas| > a%.
In the first part of the proof we will show thay’) exists and that it's very close {g). First,

(nlH|n) = (n|H1ln) + (n|Ha|n) = (n|Hi|n) =0

where we usedh)) € S. Therefore, the Hamiltonia#/ must have an eigenvectpy’) whose eigenvalue is
at most0. Write

') = asln}) + calny)

with ) € S, |nh) € F, a1, € R such thatu; > 0, af + o3 = 1 and use Fact 1 to obtajns| < /&
and then Fact 2 together with;) € S to get
s ) = (AT
N i1 Uit 17/

Write
M) =mnln) +elnt)
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and let us assume that we have chosen the phas$g)o$uch thaty; > 0. Then (9} [IIH II|n}) =
A2 (- [TLH, T |nt) > ~2 usingTTH;I1|n) = 0 and the assumption diH; 1.
Finally, we get that

17"y =l < ') = aal)ll + llealmy) = [0+ y) — vl + valn) — Imll <
VKT +K/JJ+2K34 ) gV 4 ak32 )] < 8K3/1 ) g4

where we used > a? > 1 — K/J andy; > ~3 > 1 —4K%2/\/J.
In the second part of the proof we will show that for any vedtrorthogonal to|n/), ((|H|¢) >
1 —70K3/2/\/J. As before, we write
€) = B1l€1) + Balé2)

with |£1) € S, |&) € F, 81, B2 € R such that3? + 32 = 1. Then from Fact 1,

H K
g < eI+

Therefore, if32 > 2K/J we are done. Assume tha@f < 2K/J. From Fact 2 and our assumptions on
I1H4 11 it follows that

(ElH|E) > (&alHil&) —4/2K3)T
(G TTHLTT|Ey) — 44/2K3)T
1— [(n|&)]* — 4v/2K3/J

V

Now, using(r/|¢) = 0 and|n) € S:
K3/4
[nl&n)| = [nlE)] = 1Ml =[] < [{n =71 < [llm) — 1)l < 811
Finally, by combining the inequalities above, we obtain
(E|H|E) > 1 — 64K )T — 4v2K32 )N T > 1 - T0K32 )T
]

Corollary 17. Let H = H; + H» be the sum of two Hamiltonians operating on some Hilbert sgéc=
S + F. The HamiltonianH, is such that all its eigenvectors are inside eith®ror F. Moreover, the
eigenvalues of eigenvectors hare 0 and those of eigenvectors jf are at leastJ. Also, assume that
|H1|| < K forsomeK > 1. Assume that the Hamiltoniafis ; has an eigenvectdr) € S with eigenvalue
a and all other eigenvectors are with eigenvalues at léasthen, the Hamiltoniardd has an eigenvector
|n) with eigenvalue at most such that

(K +a)%/*
JV4/b —a

and all other eigenvectors are with eigenvalues at léast70(K + a)%/2/\/J.

') = Imll <8

Proof. DefineH] = (Hy —a-I1)/(b—a), Hy = Hy/(b— a) andH' = Hy + H). Notice that| H{|| <
(K+a)/(b—a) and thatf}, eigenvalues otF are atleasy/(b—a). Then, using the above lemma, we obtain
that H' has an eigenvector with eigenvalue at mosthose distance fror) is at most3((K + a)/(b —
a))3*/(J/(b — a))'/*. Moreover, all other eigenvectors &F are with eigenvalues at least- 70((K +
a)/(b—a))*?//J/(b— a). We now complete the proof by translating these results tmék O
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We apply Corollanf1I7 by takindf, to be H,., and H; to be the remaining terms such thd{s) =
H, + H,. Notice that||H; || < O(L) because it consists 6¥(L) terms, each of constant norm. Also note
that the ground energyof Hs; = Hs(s) is at most%. Moreover, we havé —a > 1/L? by the same proof
as in the spectral gap of the non-geometrical Hamiltoniaende, Corollar{ 7 implies that the spectral gap
decreases by at most

T0(K 4 a)*?/VJ = O(L¥? )V ).

Moreover, the distance between the ground staté @f) and|») is at most

K +a)3/4
§1/4 /—b)— 0 = O(L3/4/J1/4)-

By choosingJ = O(LY) we obtain that the spectral gap Hf(s) is at leastl /(2L3) and that the ground
state ofH (1) is close tgn). Hence, adiabatic simulation in tind®(L°) is possible.
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C The States|y,) For the Two Dimensional Construction

PRIV RFRXIVXRR
QIR RFRXIVIXRR
SIS ICIC SIS SIS ISISIS)
0660000 0000000
OOO0OO0O0O0O OOOOOOO
OOO0OO0O0O0O OOOOOOO
OOO0OO0O0O0O OOOOOOO
PRIV RFRXIVXRR
PRIV RFRXIVIXRR
DS IS IS IS ICICAS
o6 0000000
OOO0OO0O0O0O OOOOOOO
OOO0O0O0O0O OOOOOOO
OOO00O0O0O OOOOOOO

Figure 4: a) The state at the beginning of t#fta round. Then particles in the-th column are in their “first
phase”, where their computational degrees of freedom dheistate of the circuit’s qubits in the beginning
of the rth round. b) Next, the gates of th¢h round of the circuit are applied on the qubits from top to
bottom. The particles on which the gates have been appleed@w in their “second phase.” ¢) Next, the
particle’s computational state are moved one column toitjid, rand their phase becomes “first” again. The
internal qubit-state of the particles does not change sghase. d) Once this phase is over, we are back to
a state of the same shape we had in a), one column (and ong facther.

D Rulesfor the Clock Hamiltonian on the L attice
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| Forbidden configurationt Guarantees that

OO0, 0®, 0O O is to the right of all other qubits
0R, DX, DR Q) is to the left of all other qubits
0, R0 (O and@ are not horizontally adjacer]
DD, D®, @D, @D | only one of]), @ per row

O O® ®

® @ O only @ above®

O O O

0@ ® only @ below @

O ® . .
QO O and@ are not vertically adjacent
% ; % no O below @ and no{() below )

Table 1: Local rules that guarantee that a basis stateSs in
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