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Abstract

Adiabatic quantum computation has recently attracted attention in the physics and computer science
communities, but its computational power has been unknown.We settle this question and describe an
efficient adiabatic simulation of any given quantum algorithm, which implies that the adiabatic com-
putation model and the conventional quantum circuit model are polynomially equivalent. Our result
can be extended to the physically realistic setting of particles arranged on a two-dimensional grid with
nearest neighbor interactions. The equivalence between the models provides a new vantage point from
which to tackle the central issues in quantum computation, namely designing new quantum algorithms
and constructing fault tolerant quantum computers. In particular, by translating the main open questions
in quantum algorithms to the language of spectral gaps of sparse matrices, the result makes quantum
algorithmic questions accessible to a wider scientific audience, acquainted with mathematical physics,
expander theory and rapidly mixing Markov chains.
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1 Introduction

Quantum computation has emerged in the last decade as an exciting and promising direction of research
due to several breakthrough discoveries. Shor’s quantum algorithm for factorization [1], followed by sev-
eral other algorithms to solve algebraic and combinatorialproblems (see, e.g., [2–5]) have demonstrated the
possible exponential advantage of quantum computing systems over classical ones. These discoveries moti-
vated interest in the physical implementation of quantum computation, resulting (to date) in the realization
of small-scale quantum computations in various systems (see, e.g., [6–12]). The field now faces two major
challenges. The first is to extend the capabilities of quantum algorithms, and in particular, to come up with
substantially new algorithmic techniques which go beyond the main quantum tool: the Fourier transform.
The second is to improve the current experimental and theoretical methods [13] of protecting the com-
putation against decoherence and errors, thereby addressing the main stumbling blocks in the realization of
large-scale quantum computers. Recently, Farhi et al. [14,15] suggested an ingenious paradigm for quantum
algorithms calledadiabatic computation, which attracted considerable attention [14–21] since it was shown
to exhibit promising algorithmic capabilities [16–18], aswell as inherent robustness against decoherence
and control errors [20].

In the adiabatic paradigm, a combinatorial problem is rephrased as the problem of finding the lowest
energy state (namely, theground state) of a “target” HamiltonianHfinal (a Hamiltonian is simply a Hermi-
tian matrix). For the Hamiltonian to be physically realistic, we require that it islocal, i.e., involves only
interactions between a constant number of particles. To solve the combinatorial problem, a quantum system
is initialized in the ground state of an initial local HamiltonianHinit, and thenHinit is slowly transformed
intoHfinal. A celebrated theorem from physics called the quantum adiabatic theorem [22,23] implies that if
the transformation is carried out sufficiently slowly, the system tracks the ground state of the time varying
Hamiltonian and therefore ends up in the desired ground state ofHfinal. Indeed, if the spectral gap of the
time varying Hamiltonian is never too small then the entire process can be carried out efficiently. Adia-
batic computation can therefore be viewed as a process that takes a quantum state to another. We remark
that previous research in the area followed [15] and focusedon the case whereHfinal encodes a classical
optimization problem and so is diagonal. This means that thefinal state is a basis state. We observe here
that the relevant and natural model from a physical point of view does not require this. Using the same
physical resources (namely, local Hamiltonians) one can actually adiabatically generate much more compli-
cated superpositions. Adiabatic computation is thus viewed as a process that takes a tensor product state to
a (possibly more general) quantum superposition.

The focus of this paper is the characterization of the computational power of such adiabatic computa-
tions. [21] began to address this question when they showed that a related model to adiabatic computation,
which usedsimulatableHamiltonians (i.e., Hamiltonians which are given non explicitly as the result of
applying sequences of quantum gates) is as powerful as conventional quantum circuits. [21] left the main
question of universality of adiabatic computation with physically realistic (namely, local) Hamiltonians,
open. This model might seem at first sight less powerful than standard quantum computation, because of
the local, almost explicit, specification of the final state.Indeed, previous results gave only partial answers
regarding the computational capabilities of this model. [15] used adiabatic computation to tackle an NP-
complete problem. There is mounting evidence [17,19,24] that the algorithm of [15] takes exponential time
in the worst case for such problems. [19, 25] showed that adiabatic computation can implement Grover’s
quantum search algorithm [26], and [16–18] showed that adiabatic computation can ’tunnel’ through wide
energy barriers and thus outperform simulated annealing, the classical counterpart of the adiabatic model.
These results demonstrated polynomial speed-ups of adiabatic computation over general classical search al-
gorithms1. From the other direction, [15] imply that adiabatic computation is not stronger computationally

1In fact, [16, 17] even demonstrated an exponential speed-upof adiabatic computation over classical local search algorithms
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than the standard quantum model. Where exactly does the adiabatic model sit on the scale between polyno-
mial advantage over classical computation, and the full quantum computational power, was unclear. In fact,
even the question of whether adiabatic computers can simulate generalclassicalcomputations efficiently
was unknown.

1.1 Results

Our main result clarifies the picture. We show:

Theorem 1. The model of adiabatic computation with local Hamiltoniansinvolving three qubit interactions
is polynomially equivalent to the standard model of quantumcomputation.

This shows that universal quantum computation can be fully studied and implemented in the adiabatic
framework, and so adiabatic computation can be thought of asan alternative model to quantum computation.

We also show that a similar theorem holds when we relax the requirement that the Hamiltonians be
local, and allowsparseHamiltonians. These are Hermitian matrices which have at most polynomially many
non zero elements at each row and column, where we also require that the matrix isexplicit, namely each
element can be computed efficiently given its indexes. We show

Corollary 2. The model of adiabatic computation with sparse Hamiltonians is polynomially equivalent to
the standard model of quantum computation,

Corollary 2 is potentially more useful in the context of algorithms and complexity, since sparse Hamil-
tonians seem to be mathematically easier to handle than local ones. One direction follows immediately from
Theorem 1 by observing that local Hamiltonians are in particular sparse. The other direction, namely that
adiabatic computations with sparse Hamiltonians can be simulated efficiently by standard quantum comput-
ers, follows from the implementation of sparse Hamiltonians using quantum circuits presented in [21].

From the algorithmic point of view, these result show that all quantum algorithmic questions can be
framed in the language of eigenstates and spectral gaps of local or even sparse Hermitian matrices. The
design of quantum algorithms can thus draw on the wide scientific literature on these fundamental objects,
in particular expander theory [27], rapidly mixing Markov chains (see, e.g., [28, 29]), and mathematical
physics. This raises the hope that tools from these areas might be useful to tackle the difficult challenge
of designing new quantum algorithms. Indeed, probability theory was already used in analyzing spectral
gaps of Hamiltonians (see, e.g., [30] and references therein, as well as the proofs in this paper). In addition,
we note that the adiabatic model appears ideally suited for the task of quantum state generation, which was
shown recently to be essential for many important quantum algorithmic problems [21].

As for experimental applications, our result shows that universal quantum computation can in principle
be implemented adiabatically. We bring the model one step closer to physical realization by showing that
adiabatic computation with a more physically realistic setof Hamiltonians is also quantum universal:

Theorem 3. The model of adiabatic computation with two-body nearest neighbor Hamiltonians operat-
ing on six-state particles set on a two dimensional grid, is polynomially equivalent to standard quantum
computation.

Experimentally realizing quantum computation using the adiabatic model has potential advantages from
the point of view of fault tolerance, i.e., reliable computation in the presence of noise. [20] argues that if
adiabatic computers were cooled below the Hamiltonian’s energy gap, decoherence could essentially be
ruled out. Furthermore, [20] studies the effect of unitary control errors in the Hamiltonian and conclude
that such errors might, in fact,help the adiabatic computation. Our result combined with these studies

—such as simulated annealing— though the problem of [16,17]can be solved efficiently by other classical methods.
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indicates that the possibility of fault tolerant adiabaticcomputation deserves to be further studied, both
theoretically and experimentally. Experimental realization of small-scale adiabatic computation was already
demonstrated [31].

Finally, we consider further the possible relevance of the above results to fault tolerance. If the Hamil-
tonian of the adiabatic evolution leaves a certain subspaceinvariant, it actually suffices to lower bound the
spectral gap of the Hamiltonianrestrictedto that subspace. (This is the case in Subsection 3.1) However,
the full spectral gap, namely the gap in the entire Hilbert space, maybe important in the context of noise,
especially thermal fluctuations (see [20])2. It turns out that

Theorem 4. The above results hold with Hamiltonians with inverse polynomial “full” spectral gap.

1.2 Key Ideas

Given a quantum circuit [35], we associate with it a corresponding adiabatic computation. Without loss of
generality we will assume that the input to the quantum circuit consists ofn qubits all initialized to|0〉’s 3.
Then, a sequence ofL unitary gates,U1, . . . , UL, each operating on one or two qubits, is applied to the state.
The system’s state after theℓ’th gate is|α(ℓ)〉. The output of the quantum circuit is in general a complicated
quantum state|α(L)〉 of n qubits, which is then measured in the standard basis.

A natural attempt to design an adiabatic computation that mimics the circuit’s computation would be
to defineHfinal to be a local Hamiltonian with|α(L)〉 as its ground state. This poses a difficulty: we want
to explicitly specify the Hamiltonianwithout knowingthe complicated output of the quantum circuit in
advance.

The key to solving this problem is based on an idea by Kitaev [36] and Feynman [37]. Instead of
designing a Hamiltonian that has the final unknown state of the circuit as its ground state, a task that seems
impossible, one can defineHfinal to be alocal Hamiltonian whose ground state is the entirehistory of the
quantum computation, insuperposition:

|η〉 :=
1√
L+ 1

L
∑

ℓ=0

|α(ℓ)〉 ⊗ |1ℓ0L−ℓ〉c. (1)

The right (L qubits) register is a clock which counts the steps by adding1s from left to right. The superscript
c denotes clock qubits. For simplicity, denote|γℓ〉 := |α(ℓ)〉⊗|1ℓ0L−ℓ〉c. Kitaev [36] defined a Hamiltonian
Hfinal involving five body interactions (three clock particles andtwo computation particles) that has|η〉 as
its ground state. The idea is that the unary representation of the clock enables a local verification of correct
propagation of the computation from one step to the next. Forthe initial HamiltonianHinit we require that
it has|γ0〉 as its unique ground state.H(t) is taken to be a convex combination ofHinit andHfinal.

A technical problem lies in showing that the spectral gap of the intermediate HamiltonianH(t) is larger
than1/L2. To do this, we use a mapping of the Hamiltonian to a Markov chain corresponding to a random
walk on the time steps. We then apply the conductance bound from the theory of rapidly mixing Markov
chains [28] to bound the spectral gap of this chain. We note that in general, applying the conductance bound
requires knowing the limiting distribution of the chain, which in our case is hard since it corresponds to
knowing the coefficients of the ground state at all times. We circumvent this problem by noticing that it is
actually sufficient in our case to know very little about the limiting distribution of the Markov chains, namely
that it is monotone (in a certain sense to be defined later.). This allows us to apply the conductance bound,
and deduce that the spectral gap isΩ(1/L2). From this is follows that ifT ≫ L4, the adiabatic system

2The importance of non-negligible spectral gaps to fault tolerance appeared already in geometric and topological quantum
computation [32–34]. Note that these models differ from adiabatic computation in that the entire computational space has the
same energy, and hence the spectral gap is irrelevant from analgorithmicpoint of view

3Otherwise, the firstn gates can be used to flip the qubits to the desired input.
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will end up close to the history state|η〉. Extracting the output of the quantum circuit from the history state
efficiently is easy: Measure all qubits and if the clock is at state |1l〉, the computational qubits carry the
result of the circuit. Otherwise, start from scratch4.

This scheme would not suffice to prove Theorem 3. The basic problem lies in arranging sufficient inter-
action between the computational and the clock particles, since if the particles are set on a grid, each clock
particle can only interact with four neighbors. We circumvent this problem as follows. Instead of having
separate clock and computational particles, we now assign to each particle both clock and computational
degrees of freedom (this is what makes our particles six-states). We then construct a computation that prop-
agates locally over the entire set of particles, snaking up and down each column of the lattice. The adiabatic
evolution would now end up in the history state of this snake-like sequence of states.
Organization of Paper: In Section 2 we describe the model and state some relevant facts about Markov
chains. Section 3 shows how adiabatic systems with local Hamiltonians allowing five- and later three-body
interactions, can simulate efficiently conventional quantum computations. Section 4 shows how to adapt the
construction to a two-dimensional grid. We conclude with open questions.

2 Preliminaries

2.1 The Adiabatic Computation Model

For background onn-qubit systems, quantum circuits and Hamiltonians, see [35]. Consider a quantum
system composed ofn particles, governed by Schrödinger’s equation:−ih̄ d

dt |ψ(t)〉 = H(t)|ψ(t)〉. H(t),
called theHamiltonianof the system, is a Hermitian matrix. It’s eigenvalues are called energies. We require
thatH(t) is local, i.e.,H(t) =

∑

AH
A(t) whereA runs over constant size subsets of the particles, and

HA(t) operates trivially on all butA (i.e., it is a tensor product of a Hamiltonian onA with identity on the
particles outside ofA). The system is initialized in a tensor product state, the ground state (lowest energy
eigenstate) of the initial HamiltonianHinit = H(0). One then slowly modifies the Hamiltonian over a time
of lengthT from Hinit to Hfinal = H(T ) by settingH(t) := (1 − t/T )Hinit + (t/T )Hfinal (from now
on we uses = t/T ). In the limit of largeT we are guaranteed by the adiabatic theorem [22, 23] that the
final state will be very close to the final ground state. Just how largeT should be is determined by the
spectral gapof the time dependent HamiltonianH(s), denoted∆(H(s)), which is the difference between
the Hamiltonian’s lowest and next to lowest eigenvalue. More precisely, the adiabatic theorem requires that

T = Ω

(

‖dH
ds ‖

mins∈[0,1]{∆2(H(s))}

)

. (2)

In fact, if there exists a subspaceS such thatH(t) leavesS invariant for allt, and the initial groundstate
belongs toS, then it is sufficient that the above condition holds forH(t) restricted toS. For the adiabatic
algorithm to be efficient, we require thatT is polynomial inn, i.e., bounded bync for some constant
c. Typically, the norm ofdH

ds is bounded by some small constant (2, in the cases we study). We therefore
require that for alls ∈ [0, 1] the spectral gaps∆(H(s)) are at least1/nc for some (preferably small) constant
c. If this condition holds, the final state is close to the ground state ofHfinal, which can be thought of as the
outcome of the computation. In the end, the particles are measured to give the result of the computation.

2.2 Markov Chains and Hermitian Matrices

Under certain conditions, there exists a standard mapping of Hermitian matrices to Markov chains (i.e.,
stochastic matrices). LetG be a Hermitian matrix operating on anL+1 dimensional Hilbert space. Assume

4This gives an overhead factor ofL, which can be avoided by adding, say,10L identity gates to the quantum circuit at the end,
so that most of the history state is concentrated on the final state|α(L)〉)
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that all the entries ofG are non-negative. Consider the eigenvector(α0, . . . , αL) of G, with the largest
eigenvalueµ. Assumeµ > 0 andαi > 0 for all 0 ≤ i ≤ L. We can now define the matrixP by:

Pij :=
αj

µαi
Gij . (3)

P is well defined and is stochastic because all its entries are non-negative and each of its rows sums up to
one. It is easy to verify the following fact:

Fact 1. (v0, . . . , vL) is an eigenvector ofG with eigenvalueδ if and only if (α0v0, . . . , αLvL) is a left
eigenvector ofP with eigenvalueδ/µ.

We will consider Hermitian matrices of the formG = cI−H for some constantc and some Hamiltonian
H. The above fact implies that if(α0, . . . , αL) is the groundstate ofH with eigenvalueλ then(α2

0, . . . , α
2
L)

is the limiting distribution ofP (i.e., left eigenvector with maximal eigenvalue 1), and thegap betweenP ’s
largest and second largest eigenvalues is equal to∆(H)/(c − λ). Another useful fact is the following; its
proof is based on the Perron-Frobenius theorem:

Fact 2. [38] Let G be Hermitian, with non-negative entries, and∃k < ∞ s.t. all entries ofGk are strictly
positive. ThenG’s largest eigenvalue is positive and non-degenerate. Moreover, all entries of the corre-
sponding eigenvector are positive.

2.3 Spectral Gaps of Markov Chains

Numerous techniques were developed to bound the spectral gap of a Markov chain matrix, as it is related [29]
to the important quantity of themixing timeof the chain. In this paper we use the conductance bound [28].
Given a stochastic matrixP with limiting distribution π, and a subsetB ⊆ {0, . . . , L}, the flow from
B is given by: F (B) :=

∑

i∈B,j /∈B πiPij . For eachB, define theπ-weight asπ(B) :=
∑

i∈B πi. The
conductanceof P is defined by

ϕ(P ) := min
B

F (B)

π(B)
,

where we minimize over all non-empty subsetsB ⊆ {0, . . . , L} with π(B) ≤ 1
2 .

Theorem 5. (The conductance bound [28]): The eigenvalue gap ofP is ≥ 1
2ϕ(P )2.

3 Equivalence of Adiabatic and Quantum Computation

We show here how to simulate a quantum circuit withL two-qubit gates onn qubits by adiabatic computa-
tion onn + L qubits. The initial ground state in the adiabatic evolutionis |γ0〉 = |0n〉 ⊗ |0〉, and the final
state is, as explained in the introduction, thehistory state defined in Equation 1. We start by allowingfive
qubit interactions, and later show how to reduce it to three.

3.1 Universality of Adiabatic Computation with Five Qubit Interactions

3.1.1 The Hamiltonian

We would like to define a HamiltonianHinit that has as its ground state|γ0〉, andHfinal that has as its ground
state|η〉. To do this, we construct local Hamiltonians which “check” that the ground states are the correct

5



ones, and assign energy penalty whenever this is not the case. The following Hamiltonian checks that the
clock’s state is indeedℓ = 0 in the beginning

Hclockinit = |1〉〈1|c1,

where the subscript indicates which clock qubits the projection operates on. We also defineHclock, which
checks that the clock’s state is always of the form of|1ℓ0L−ℓ〉c by assigning an energy penalty to any basis
state on the clock qubits that contains the sequence01:

Hclock :=

L−1
∑

ℓ=1

|01〉〈01|cℓ,ℓ+1,

The ground spaceS of Hclock is spanned by exactly those states that represent a legal clock state. Next
considerHinput, which checks that the input of the computational qubits is all zeroes, by penalizing all
states with clock stateℓ = 0 whose computation qubits are not all zero:

Hinput :=

n
∑

i=1

|1〉〈1|i ⊗ |0〉〈0|c1.

We define:

Hinit := Hclockinit +Hinput +Hclock (4)

Claim 6. |γ0〉 is a ground state ofHinit with eigenvalue0.

Proof. The fact thatHinit|γ0〉 is easy to verify. All eigenvalues ofHinit are non negative since all terms in
Hinit are positive semi definite.

Hfinal is defined by checking that the propagation from stepℓ− 1 to ℓ is correct, i.e., corresponds to the
application of the gateUℓ:

Hfinal :=
1

2

L
∑

ℓ=1

Hℓ +Hinput +Hclock (5)

where for1 < ℓ < L, the following Hamiltonian corresponds to the desired check:

Hℓ :=
I ⊗ |100〉〈100|cℓ−1,ℓ,ℓ+1 − Uℓ ⊗ |110〉〈100|cℓ−1,ℓ,ℓ+1

−U †
ℓ ⊗ |100〉〈110|cℓ−1,ℓ,ℓ+1 + I ⊗ |110〉〈110|cℓ−1,ℓ,ℓ+1

. (6)

The three-qubit terms inHl can be seen as|l〉〈l|, |l − 1〉〈l − 1|, |l〉〈l − 1| and|l − 1〉〈l| respectively, i.e.,
corresponding to moving one step forward or backwards. For the boundary casesℓ = 1, L, we omit one
clock qubit from these terms:

H1 := I ⊗ |10〉〈10|1,2 + I ⊗ |00〉〈00|1,2 − U1 ⊗ |10〉〈00|1,2 − U †
1 ⊗ |00〉〈10|1,2 (7)

HL := I ⊗ |11〉〈11|L−1,L + I ⊗ |10〉〈10|L−1,L − UL ⊗ |11〉〈10|L−1,L − U †
L ⊗ |10〉〈11|L−1,L.

We remark that for the results in this subsection (and only here) the termsHclock andHinput can be com-
pletely omitted. We introduce them here for the sake of consistency with the rest of the paper.

Claim 7. |η〉 is the ground state ofHfinal with eigenvalue0.

Proof. Same as that of Claim 6.
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3.1.2 The Spectral Gap

It remains to show that the spectral gap ofH(s) is non-negligible. It is easy to verify that:

Claim 8. The subspaceS0, spanned by|γ0〉, . . . , |γL〉 is invariant underH(s), i.e.,H(s)(S0) ⊆ S0

Hence, by Subsection 2.1, Theorem 1 follows from

Claim 9. ∆(HS0
(s)) = Ω(L−2) for all s ∈ [0, 1].

(Here and later we use the notationHA to denote the Hamiltonian restricted to a subspaceA.)

Proof. Let us write the HamiltoniansHS0,init andHS0,final in the basis|γ0〉, . . . , |γL〉 of S0. Hclock and
Hinput are0 onS0 and can thus be ignored. We have the following(L+ 1) × (L+ 1) matrices:

HS0,init =











0 0 . . . 0
0 1 . . . 0
...

...
. ..

...
0 0 . . . 1











, (8)

HS0,final = 1
2 |γ0〉〈γ0| − 1

2 |γ0〉〈γ1| − 1
2 |γL〉〈γL−1| + 1

2 |γL〉〈γL|

+

L−1
∑

l=1

(−1
2 |γl〉〈γl−1| + |γl〉〈γl| − 1

2 |γl〉〈γl+1|)

=





















1

2
− 1

2
0 · · · 0

− 1

2
1 − 1

2
0

. . .
.
.
.

0 − 1

2
1 − 1

2
0

. . .
.
.
.

. . .
. . .

. . .
. . .

. . .

.

.

. 0 − 1

2
1 − 1

2
0

0 − 1

2
1 − 1

2

0 · · · 0 − 1

2

1

2





















. (9)

We now lower bound∆(HS0
). We consider two cases:

The case s < 1/3: Here,HS0
(s) is sufficiently close toHS0,init which has a spectral gap of1, and we can

use standard techniques (Gerschgorin’s Circle Theorem [39]) to show that the gap ofHS0
(s) is larger than

1/3. Let Ri =
∑

j 6=i |HS0
(s)ij |. The Circle Theorem states that for eachi there is an eigenvalue in the

disk of radiusRi aroundHS0
(s)ii. For s < 1/3, HS0

(s)0,0 ≤ 1/6 andR0 < 1/6, so the corresponding
eigenvalue is less than1/3. Similarly, we obtain that the eigenvalue corresponding toHS0

(s)L,L is at least
2/3. For all 0 < i < L, Ri < 1/3, andHS0

(s)ii = 1, and so the remaining eigenvalues are also at least
2/3. Hence the gap is larger than1/3.

The case s ≥ 1/3: We note thatHS0,final is the Laplacian of the simple random walk [29] of a particle on
a line of lengthL+ 1. A standard result in Markov chain theory implies∆(HS0,final = Ω(1/L2) [29]. For
large enoughs, the matrix has enough weight of a random walk to apply Markovchain techniques.

Let (α0, . . . , αL) be the ground state ofHS0
(s) with the eigenvalueλ. Since the spectral norm ofHS0

(s)
is at most2, λ is at most2 in absolute value. Define the Hermitian matrixG(s) = 4I − HS0

(s). Clearly,
G(s) has non-negative entries and for large enoughk, all entries ofG(s)k are strictly positive. Hence,
following Fact 2, we obtain that the largest eigenvalueµ = 4 − λ of G(s) is positive and non-degenerate
and the corresponding eigenvector(α0, . . . , αL) has positive entries. We can now map the matrixG(s) to a
stochastic matrixP (s) as described in Subsection 2.2. The transition matrixP (s) describes a random walk
on the line ofL+ 1 sites:

7



Pk,k−1

k − 1 k + 1k

Pk,k+1

. . .10 L. . .

Figure 1: The random walk corresponding toP (s)

Fact 3. For all s > 0, the ground state ofHS0
(s) is monotone, namelyα0 ≥ α1 ≥ . . . ≥ αL > 0.

Proof. It is easy to check thatG(s) preserves positivity and monotonicity, and(α0, . . . , αL) is the limit
of the application ofG(s)/µ on the monotone vector(1, . . . , 1) infinitely many times. (This is because all
other eigenvalues ofG(s) are strictly smaller thanµ in absolute value, so their contribution decays to0.)

Hence, the limiting distribution ofP (s), π = (α2
0, . . . , α

2
L), is monotone. We use this and simple

combinatorial arguments to prove the following claim, the proof of which can be found in Appendix A:

Claim 10. ϕ(P (s)) ≥ 1
36(L+1)

By Theorem 5, we have that the spectral gap ofP (s) is larger than 1
2·(36)2·(L+1)2

. We have by Subsection

2.2 that∆(HS0
) ≥ µ

2·(36)2(L+1)2 . Finally, notice thatµ = 4 − λ ≥ 2 sinceλ ≤ 2.

Remark In fact, we can prove a lower bound on the full gap:∆(H(s)) = Ω(L−3), using the termsHclock

andHinput. The proof follows the first part of the proof of Claim 11 and isomitted here.

3.2 From Five Qubits to Three

To move to three-body interactions, we modifyHl in Equations 6,7, by leaving in the expressions corre-
sponding to clock qubits only those terms which correspond to the current time stepℓ:

H ′
ℓ := I ⊗ |0〉〈0|cℓ − Uℓ ⊗ |1〉〈0|cℓ − U †

ℓ ⊗ |0〉〈1|cℓ + I ⊗ |1〉〈1|cℓ . (10)

This introduces terms in the Hamiltonian which interact between legal and non-legal clock states, and so
H(s) no longer leaves the subspaceS0 invariant. To this end, we assign a much larger energy penalty to
states outside of the legal clock states. SetJ = O(L9) and define:

H ′
init := Hclockinit + J ·Hclock +Hinput , H ′

final :=
1

2

L
∑

ℓ=1

H ′
ℓ + J ·Hclock +Hinput (11)

Clearly, the new Hamiltonians have the same ground states asthe old ones. Theorem 1 follows from:

Claim 11. ∆(H ′(s)) = Ω(L−3) for all s ∈ [0, 1].

Proof. (Sketch. See appendix.) The proof builds on the proof of Claim 9, with two additional ideas. First,
we restrict attention to states with legal clock states, i.e., states inS, and observe that the HamiltonianH ′

S(s)
can be block diagonalized, where one of the blocks is exactlyHS0

(s) from Claim 9. We show that the lowest
eigenvalue in the other blocks isΩ(L−3) because ofHinput which is non zero there. This shows the desired
spectral gap forH ′

S(s). SinceS is not invariant, we need to consider states outside ofS. We use similar
ideas to those used in [40] in the context of quantum NP-complete problems: since the energy given to states
outside ofS by Hclock is at leastJ , they cannot appear in the ground state of the Hamiltonian with large
weights, and the interaction with them does not effect the lower energy states that much.
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4 Two-Body Local Interactions on a Two-Dimensional Lattice

In this section we prove Theorem 3. First, assume without loss of generality that the quantum circuit consists
of R rounds, where each round is composed ofn gates (some can be the identity gate), as in Figure 2. This
can be done by introducing extra identity gates.

|0〉

|0〉

|0〉

|0〉

Figure 2: The first gate in each round is a one-qubit gate applied to the first qubit. Fori = 2, . . . , n, thei’th
gate is a two-qubit gate applied to qubitsi− 1 andi.

The adiabatic computation is performed on6-dimensional particles, arranged on a two-dimensional
square lattice withn rows andR+ 1 columns. Each column will correspond to a round of the computation
of the circuit. The six internal states of each particle are divided to four groups, corresponding to four “clock”
degrees of freedom: “unborn”:|©〉, “first phase”:| ↑©〉, | ↓©〉, “second phase”:| ↑⋄©〉, | ↓⋄©〉, and “dead”:|⊗〉.
The two “first phase” states and two “second phase” states correspond to computational degrees of freedom,
namely to the “zero” and “one” state of a qubit. We write| ↑↓©〉 (and similarly| ↓↑⋄©〉) to denote a general state
that belongs to the subspace spanned by| ↑©〉 and| ↓©〉.

We now define the states|γl〉. See Figure 4 for illustration. Once again,|γ0〉 corresponds to the all|0〉
input to the quantum circuit. Here, it is the state in which the particles in the leftmost column are in| ↑©〉
whereas the rest are “unborn”:|©〉. |γℓ〉 transforms to|γℓ+1〉 by changing the particles on the lattice in
the following order (which resembles a propagation of a snake): first, we modify the particles in the left
most column from top to bottom, by applying the first round of computation on their internal qubit degree of
freedom, while simultaneously changing the particle’s state from a first-phase state to a second-phase state.
Once we reach the last particle in the column, we start movingup the same column, copying the qubit’s
state of the particle one site to the right, leaving the copied particle in the “dead” phase, while the particle
to the right is now in its first phase. When we reach the topmostparticle in the column, all particles in this
column are dead and the particles in the next column are readyfor the next round of computation. Finally,
in |γL〉 all columns but the last one are “dead”, and then qubits in the right column are in the superposition
corresponding to the final state of the quantum circuit, i.e., the superposition obtained by mapping|0〉 to ↑©
and|1〉 to ↓©. We getL = 2(R+ 1)n states (two for each site in the lattice), plus the initial state.

As in the non-geometrical adiabatic computation, we now usethe |γℓ〉 to define the initial and final
groundstates: the initial groundstate of the adiabatic computation is|γ0〉 and the final one is the history state
|η〉 defined by|η〉 = 1√

L+1

∑L
ℓ=0 |γ(ℓ)〉.

4.1 The Hamiltonian

The notion of a legal clock state now means a state whose clockdegrees of freedom has the sameshapeas
one of the states in Figure 4. The following claim is easy verification (see also Table 1).

Claim 12. A state ofn × R + 1 six state particles set in ann × (R + 1) grid is of one of the shapes as in
Figure 4 if none of the following forbidden configurations appear in the state:

© ↑↓©, © ↓↑⋄©, ©
⊗

, ↑↓©
⊗

, ↓↑⋄©
⊗

,
⊗

©, ↑↓© ↑↓©, ↑↓© ↓↑⋄©, ↓↑⋄© ↑↓©, ↓↑⋄© ↓↑⋄©

©
↓↑⋄© ,

↑↓©
↓↑⋄© ,

⊗

↓↑⋄© ,
↑↓©
© ,

↑↓©
⊗ ,

©
⊗ ,

⊗

© ,
↓↑⋄©
© ,

⊗

↑↓© .

9



We define a two body nearest neighbor Hamiltonian which forbids the above configurations. For exam-
ple, if the rule forbidsA = (i, j) in state© to the left ofB = (i, j + 1) in state

⊗

, then the corresponding
term in the Hamiltonian is(|©,

⊗〉〈©,
⊗|)A,B . Summing over all the forbidden configurations in Claim

12 applied to all pairs of particles, We have

Hclock := J
∑

r∈rules

Hr

whereJ = O(L−9). Hinput checks that none of particles in the leftmost column are in| ↓©〉:

Hinput :=
n
∑

i=1

(| ↓©〉〈 ↓©|)i,1.

We can now define the initial Hamiltonian to be:

Hinit := (I − | ↑©〉〈 ↑©| − | ↓©〉〈 ↓©|)1,1 + Hinput + Hclock.

The first term checks that the top left particle is in a| ↑↓©〉 state. ForHfinal we have:

Hfinal :=
1

2

L
∑

ℓ=1

Hℓ + Hinput + Hclock.

As before, the termsHℓ check the propagation from|γℓ〉 to |γℓ+1〉. Since|γℓ〉 differs from |γℓ+1〉 only in
two adjacent lattice sites, this is a two-body nearest neighbor Hamiltonian. There are two types of steps: an
“upward” step and a “downward” step, and thusHℓ := H

(u)
ℓ +H

(d)
ℓ . For the upward step, in which all that

is supposed to happen is that the particle moves to the right and does not change its internal qubit state, the
Hamiltonian is:

H
(u)
ℓ := |⊗, ↑©〉〈⊗, ↑©| + | ↑⋄©,©〉〈 ↑⋄©,©| − |⊗, ↑©〉〈 ↑⋄©,©| − | ↑⋄©,©〉〈⊗, ↑©| +

|⊗, ↓©〉〈⊗, ↓©| + | ↓⋄©,©〉〈 ↓⋄©,©| − |⊗, ↓©〉〈 ↓⋄©,©| − | ↓⋄©,©〉〈⊗, ↓©|.
where the left particle is followed by the right particle. The first line corresponds to changing the state
| ↑⋄©,©〉 into |

⊗

, ↑©〉. The second line is similar for| ↓⋄©,©〉 and|
⊗

, ↓©〉.
For the downward step,H(d)

ℓ needs to check that a two-qubit gate is applied correctly. Wedenote the
upper particle involved in this gate first, followed by the lower particle in the gate. Restricted to the four
| ↓↑⋄©, ↑↓©〉 states and to the four| ↓↑⋄©, ↓↑⋄©〉 states,H(d)

ℓ is the following8 × 8 matrix:

H
(d)
ℓ :=

(

I −U
−U † I

)

(cf. Equation 6); everywhere elseH(d)
ℓ is zero.

The HamiltoniansHℓ for the edge cases, i.e., the top most and bottom most particles of each column,
are defined similarly, where the only difference is that the first gate of a round in the quantum circuit is a
one-qubit gate, and soHℓ operates only on one particle. Formally, ifU is the corresponding gate, we define
Hl as the4 × 4 matrix

Hl :=

(

I −U
−U † I

)

operating on the two states| ↑↓©〉 and the two states| ↓↑⋄©〉. It is easy to check that

Claim 13. |γ0〉,|η〉 are the ground states ofHinit,Hfinal, respectively, with eigenvalues0.

It remains to prove that the spectral gap is non-negligible:

Claim 14. ∆(H(s)) ≥ 1/L3 for all s ∈ [0, 1]

Proof. The proof is essentially identical to that of Claim 11. Note that here tooS is not invariant.
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5 Conclusions and Open Questions

This paper demonstrates that quantum computation, its strengths and weaknesses, can be studied and im-
plemented entirely within the adiabatic computation model, without losing its computational power. These
results raise many open questions in various directions. Can the connections to new pools of techniques, in
particular Markov chain Monte Carlo methods and adiabatic evolutions, be helpful in improving our under-
standing of the computational power of quantum systems, andin designing new algorithms? An important
intermediate question is to try to understand known quantumalgorithms in the adiabatic language; as we
showed all known algorithms have efficient adiabatic representations.

A full fault tolerance theory for the adiabatic computationmodel is yet to be developed. In particular,
experimental study of the susceptibility of adiabatic computations to decoherence and errors might be of
great importance. Improving the parameters presented in this work, and in particular, making the simulation
of quantum systems by adiabatic evolutions linear instead of polynomial, as well as decreasing the dimen-
sionality of the particles from six to two or three, might be very important for implementation applications.
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A Proof of Claim 10

For the proof, we consider two cases, depending on whether the setB contains0 or not.

• If 0 ∈ B: Letk be the smallest index such thatk ∈ B butk+1 /∈ B. Clearly,F (B) ≥ πkP (s)k,k+1 =
αkαk+1G(s)k,k+1/(4 − λ). We bound each of these terms. We haveαk+1, αk ≥ 1√

2(L+1)
, since by

π(B) ≤ 1
2 and the monotonicity ofα2

i , we have the bound12 ≤ α2
k+1 + · · · + α2

n ≤ (L + 1)α2
k+1.

Also, using the definition ofG and the assumption thats ≥ 1/3 we get thatG(s)k,k+1 ≥ 1
6 , which

gives the lower boundF (B) ≥ 1
12(4−λ)(L+1) , and since2 ≤ 4 − λ ≤ 6, F (B)/π(B) ≥ 1

36(L+1) .
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• If 0 /∈ B, we let k be the smallest index such thatk /∈ B but k + 1 ∈ B. Because of the
monotonicity ofα2

i , we know thatπ(B) ≤ α2
k+1 + · · · + α2

L ≤ α2
k+1(L + 1). Again, we have

F (B) ≥ αkαk+1G(s)k,k+1/(4 − λ) and henceF (B)/π(B) ≥ 1
6αkαk+1/((4 − λ)α2

k+1(L + 1)) ≥
1

6(4−λ)(L+1) ≥ 1
36(L+1) .

Together these show the desired bound.

B Proof of Spectral Gap For Three Qubit Interactions

Here we prove Claim 11. We first considerH ′
S(s). From now on we omit the prime. This Hamiltonian is

block diagonal as in Figure 3.

HS0

HS1

HS2n−1

HF

0

0

Figure 3: The HamiltonianH(s) can be block diagonalized as above.

In the first subspace isS0 we get exactly the same Hamiltonian which we have dealt with in Claim 9.
In addition, we have many subspaces, denotedSj, which can be viewed as the analogues ofS0. S0 consists
of the set of states which the quantum circuit reaches starting from the all zero input.Sj consists of the set
of states which the quantum circuit reaches starting from the j’th input, i.e., then bit binary representation
of j ∈ {0, . . . , 2n − 1}. TheSj ’s spanS. We first show

Claim 15. The spectral gap ofHS(s) is Ω(1/L3).

Proof. By Claim 9, it suffices to argue that the energy ofHS(s) on each of theSj for j 6= 0 is at least1/L3.
This is true because of the penalty assigned byHinput, but the argument is slightly subtle sinceHinput

applies only for the first clock’s state. We haveHSj
(s) = HS0

(s) +HSj ,input. HSj ,input is diagonal, with
its top left element at least1 (it actually equals the number of1’s in the binary representation ofj) and all
other diagonal elements are zero. Hence, we can lower bound the ground energy ofHSj

(s) with the ground
energy of the HamiltonianHS0

(s) +H ′ where

H ′ :=











1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0











.

We can now use a geometrical lemma by Kitaev (Lemma 14.4 in [36]) that bounds the ground energy of
the sum of two Hamiltonians. It states that if the spectral gaps of both Hamiltonians are larger thanΛ, and
the angle between the two ground spaces isθ, then the ground energy of the sum is at least2Λ sin2(θ/2). In
our case, the spectral gaps areΩ(L2) by Claim 9. Moreover, the angle between the ground states satisfies
cos(θ) ≤ 1 − 1/L by the monotonicity of the ground state ofHS0

(s). It follows that the ground energy of
HSj

(s) is Ω(1/L3) for all Sj with j 6= 0.
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We now want to consider the entire Hilbert space, including states outside ofS0. We use similar ideas
to those used in [40] in the context of quantum NP-complete problems. The following lemma allows us to
eliminate the interaction betweenS and its orthogonal space which we denoteF , and essentially consider
only the Hamiltonian restricted to the spaceS while ignoring theF space completely. Once restricted to the
spaceS, the spectral gap analysis follows from Claim 15.

We would like to say that since the energy given to states inF is so high, they cannot appear in the
ground state of the Hamiltonian with large weights, and the interaction with them does not effect the lower
energy states that much. This is captured by the following general lemma, where we assume thatJ , the
penalty for being in the forbidden subspace, is much larger than the size of the interaction between the
forbidden subspace and the valid subspace.K in the following upper bounds this interaction, and thus we
assumeJ ≫ K in the following lemma.

Lemma 16. LetH = H1+H2 be the sum of two Hamiltonians operating on some Hilbert spaceH = S+F .
The HamiltonianH2 is such that all its eigenvectors are inside eitherS or F . Moreover, the eigenvalues of
eigenvectors inS are0 and those of eigenvectors inF are at leastJ . Also, assume that‖H1‖ ≤ K for some
K ≥ 1. Assume that the HamiltonianHS,1, i.e., the restriction ofH to the spaceS, has an eigenvector
|η〉 ∈ S with eigenvalue 0 and all other eigenvectors are with eigenvalues at least 1. Then, the Hamiltonian
H has an eigenvector|η′〉 with eigenvalue at most 0 such that‖|η′〉 − |η〉‖ ≤ 8K3/4/J1/4 and all other
eigenvectors are with eigenvalues at least1 − 70K3/2/

√
J .

Proof. Any vector|v〉 ∈ H can be written as|v〉 = α1|v1〉 + α2|v2〉 with |v1〉 ∈ S, |v2〉 ∈ F , α1, α2 ∈ R,
α1 ≥ 0 andα2

1 + α2
2 = 1.

Fact 1:

α2
2 ≤ 〈v|H|v〉 +K

J

Proof: 〈v|H|v〉 ≥ 〈v|H2|v〉 − ‖H1‖ ≥ Jα2
2 −K.

Fact 2:
〈v|H|v〉 ≥ 〈v1|H1|v1〉 − 4K|α2|

Proof: Write

〈v|H|v〉 ≥ 〈v|H1|v〉 = (1 − α2
2)〈v1|H1|v1〉 + 2α1α2Re〈v1|H1|v2〉 + α2

2〈v2|H1|v2〉
≥ 〈v1|H1|v1〉 −K(2α2

2 + 2|α2|)

usingα1 ≤ 1. The result follows with|α2| ≥ α2
2.

In the first part of the proof we will show that|η′〉 exists and that it’s very close to|η〉. First,

〈η|H|η〉 = 〈η|H1|η〉 + 〈η|H2|η〉 = 〈η|H1|η〉 = 0

where we used|η〉 ∈ S. Therefore, the HamiltonianH must have an eigenvector|η′〉 whose eigenvalue is
at most0. Write

|η′〉 = α1|η′1〉 + α2|η′2〉

with |η′1〉 ∈ S, |η′2〉 ∈ F , α1, α2 ∈ R such thatα1 ≥ 0, α2
1 + α2

2 = 1 and use Fact 1 to obtain|α2| ≤
√

K
J

and then Fact 2 together with|η′1〉 ∈ S to get

4
K3/2

√
J

≥ 〈η′1|H1|η′1〉 = 〈η′1|ΠH1Π|η′1〉.

Write
|η′1〉 = γ1|η〉 + γ2|η⊥〉
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and let us assume that we have chosen the phase of|η′〉 such thatγ1 ≥ 0. Then 〈η′1|ΠH1Π|η′1〉 =
γ2
2〈η⊥|ΠH1Π|η⊥〉 ≥ γ2

2 usingΠH1Π|η〉 = 0 and the assumption onΠH1Π.
Finally, we get that

‖|η′〉 − |η〉‖ ≤ ‖|η′〉 − α1|η′1〉‖ + ‖α1|η′1〉 − |η′1〉‖ + ‖|η′1〉 − γ1|η〉‖ + ‖γ1|η〉 − |η〉‖ ≤
√

K/J +K/J + 2K3/4/J1/4 + 4K3/2/
√
J ≤ 8K3/4/J1/4

where we usedα1 ≥ α2
1 ≥ 1 −K/J andγ1 ≥ γ2

1 ≥ 1 − 4K3/2/
√
J .

In the second part of the proof we will show that for any vector|ξ〉 orthogonal to|η′〉, 〈ξ|H|ξ〉 ≥
1 − 70K3/2/

√
J . As before, we write

|ξ〉 = β1|ξ1〉 + β2|ξ2〉

with |ξ1〉 ∈ S, |ξ2〉 ∈ F , β1, β2 ∈ R such thatβ2
1 + β2

2 = 1. Then from Fact 1,

β2
2 ≤ 〈ξ|H|ξ〉 +K

J

Therefore, ifβ2
2 ≥ 2K/J we are done. Assume thatβ2

2 < 2K/J . From Fact 2 and our assumptions on
ΠH1Π it follows that

〈ξ|H|ξ〉 ≥ 〈ξ1|H1|ξ1〉 − 4
√

2K3/J

= 〈ξ1|ΠH1Π|ξ1〉 − 4
√

2K3/J

≥ 1 − |〈η|ξ1〉|2 − 4
√

2K3/J

Now, using〈η′|ξ〉 = 0 and|η〉 ∈ S:

|〈η|ξ1〉| = |〈η|ξ〉| = |〈η|ξ〉| − |〈η′|ξ〉| ≤ |〈η − η′|ξ〉| ≤ ‖|η〉 − |η′〉‖ ≤ 8
K3/4

J1/4

Finally, by combining the inequalities above, we obtain

〈ξ|H|ξ〉 ≥ 1 − 64K3/2/
√
J − 4

√
2K3/2/

√
J ≥ 1 − 70K3/2/

√
J

Corollary 17. LetH = H1 +H2 be the sum of two Hamiltonians operating on some Hilbert spaceH =
S + F . The HamiltonianH2 is such that all its eigenvectors are inside eitherS or F . Moreover, the
eigenvalues of eigenvectors inS are 0 and those of eigenvectors inF are at leastJ . Also, assume that
‖H1‖ ≤ K for someK ≥ 1. Assume that the HamiltonianHS,1 has an eigenvector|η〉 ∈ S with eigenvalue
a and all other eigenvectors are with eigenvalues at leastb. Then, the HamiltonianH has an eigenvector
|η′〉 with eigenvalue at mosta such that

‖|η′〉 − |η〉‖ ≤ 8
(K + a)3/4

J1/4
√
b− a

and all other eigenvectors are with eigenvalues at leastb− 70(K + a)3/2/
√
J .

Proof. DefineH ′
1 = (H1 − a · I)/(b − a), H ′

2 = H2/(b − a) andH ′ = H ′
1 + H ′

2. Notice that‖H ′
1‖ ≤

(K+a)/(b−a) and thatH ′
2 eigenvalues onF are at leastJ/(b−a). Then, using the above lemma, we obtain

thatH ′ has an eigenvector with eigenvalue at most0 whose distance from|η〉 is at most8((K + a)/(b −
a))3/4/(J/(b − a))1/4. Moreover, all other eigenvectors ofH ′ are with eigenvalues at least1 − 70((K +
a)/(b− a))3/2/

√

J/(b − a). We now complete the proof by translating these results backtoH.
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We apply Corollary 17 by takingH2 to beHclock andH1 to be the remaining terms such thatH(s) =
H1 +H2. Notice that‖H1‖ ≤ O(L) because it consists ofO(L) terms, each of constant norm. Also note
that the ground energya ofHS,1 = HS(s) is at most12 . Moreover, we haveb−a ≥ 1/L3 by the same proof
as in the spectral gap of the non-geometrical Hamiltonian. Hence, Corollary 17 implies that the spectral gap
decreases by at most

70(K + a)3/2/
√
J = O(L3/2/

√
J).

Moreover, the distance between the ground state ofH(1) and|η〉 is at most

8
(K + a)3/4

J1/4
√
b− a

= O(L3/4/J1/4).

By choosingJ = O(L9) we obtain that the spectral gap ofH(s) is at least1/(2L3) and that the ground
state ofH(1) is close to|η〉. Hence, adiabatic simulation in timeO(L6) is possible.
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C The States |γℓ〉 For the Two Dimensional Construction

a)

⊗ ⊗ ↑↓© © © © ©
⊗ ⊗ ↑↓© © © © ©
⊗ ⊗

↑↓© © © © ©
⊗ ⊗

↑↓© © © © ©
⊗ ⊗ ↑↓© © © © ©
⊗ ⊗ ↑↓© © © © ©
⊗ ⊗ ↑↓© © © © ©

b)

⊗ ⊗ ↓↑⋄© © © © ©
⊗ ⊗ ↓↑⋄© © © © ©
⊗ ⊗

↓↑⋄© © © © ©
⊗ ⊗

↑↓© © © © ©
⊗ ⊗ ↑↓© © © © ©
⊗ ⊗ ↑↓© © © © ©
⊗ ⊗ ↑↓© © © © ©

c)

⊗ ⊗ ↓↑⋄© © © © ©
⊗ ⊗ ↓↑⋄© © © © ©
⊗ ⊗ ↓↑⋄© © © © ©
⊗ ⊗ ↓↑⋄© © © © ©
⊗ ⊗ ⊗ ↑↓© © © ©
⊗ ⊗ ⊗

↑↓© © © ©
⊗ ⊗ ⊗

↑↓© © © ©

d)

⊗ ⊗ ⊗ ↑↓© © © ©
⊗ ⊗ ⊗ ↑↓© © © ©
⊗ ⊗ ⊗ ↑↓© © © ©
⊗ ⊗ ⊗ ↑↓© © © ©
⊗ ⊗ ⊗ ↑↓© © © ©
⊗ ⊗ ⊗

↑↓© © © ©
⊗ ⊗ ⊗

↑↓© © © ©

Figure 4: a) The state at the beginning of ther’th round. Then particles in therth column are in their “first
phase”, where their computational degrees of freedom are inthe state of the circuit’s qubits in the beginning
of the rth round. b) Next, the gates of therth round of the circuit are applied on the qubits from top to
bottom. The particles on which the gates have been applied are now in their “second phase.” c) Next, the
particle’s computational state are moved one column to the right, and their phase becomes “first” again. The
internal qubit-state of the particles does not change in this phase. d) Once this phase is over, we are back to
a state of the same shape we had in a), one column (and one round) further.

D Rules for the Clock Hamiltonian on the Lattice
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Forbidden configuration Guarantees that

© ↑↓©,© ↓↑⋄©,©⊗ © is to the right of all other qubits
©⊗, ↑↓©⊗, ↓↑⋄©⊗ ⊗

is to the left of all other qubits
©
⊗

,
⊗

© © and
⊗

are not horizontally adjacent
↑↓© ↑↓©, ↑↓© ↓↑⋄©, ↓↑⋄© ↑↓©, ↓↑⋄© ↓↑⋄© only one of ↑↓©, ↓↑⋄© per row
©
↓↑⋄© ,

↑↓©
↓↑⋄© ,

⊗

↓↑⋄© only ↓↑⋄© above ↓↑⋄©

↑↓©
© ,

↑↓©
↓↑⋄© ,

↑↓©
⊗ only ↑↓© below ↑↓©

©
⊗ ,

⊗

© © and
⊗

are not vertically adjacent

↓↑⋄©
© ,

⊗

↑↓© no© below ↓↑⋄© and no ↑↓© below
⊗

Table 1: Local rules that guarantee that a basis state is inS
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