An Analysis of Wide-Area Name Server Traffic

A study of the Internet Domain Name System

Peter B. Danzig, Katia Obraczka, Anant Kumar
Computer Science Department
University of Southern California
Los Angeles, California 90089-0781

danzig@usc.edu

Abstract

Over a million computers implement the Internet’s Do-
main Name System or DNS, making it the world’s most
distributed database and the Internet’s most significant
source of wide-area RPC-like traffic. Last year, over
eight percent of the packets and four percent of the bytes
that traversed the NSFnet were due to DNS. We esti-
mate that a third of this wide-area DNS traffic was des-
tined to seven root name servers. This paper explores
the performance of DNS based on two 24-hour traces
of traffic destined to one of these root name servers.
It considers the effectiveness of name caching and re-
transmission timeout calculation, shows how algorithms
to increase DNS’s resiliency lead to disastrous behavior
when servers fail or when certain implementation faults
are triggered, explains the paradoxically high fraction
of wide-area DNS packets, and evaluates the impact
of flaws in various implementations of DNS. It shows
that negative caching would improve DNS performance
only marginally in an internet of correctly implemented
name servers. It concludes by calling for a fundamen-
tal change in the way we specify and implement future
name servers and distributed applications.

1 Introduction

The Domain Name System is the Internet’s primary
source of wide-area request—response traffic. This RPC-
like traffic is responsible for over 8 percent of the packets
that traverse the NSFnet backbone. This paper explains
why, in two 24-hour traces of wide-area name server ac-
tivity, DNS consumed twenty times more wide-area net-
work bandwidth than was absolutely necessary. This is

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

COMM’92-8/92/MD,USA

® 1992 ACM 0-89791-526-7/92/0008/0281...$1.50

more than ten times the amount of excess traflic es-
timated from observations of DNS traffic in 1988 [13].
Despite the fact that much of the factor of twenty is due
to known flaws in various DNS implementations, we ar-
gue that this calls for a fundamental change in the way
we specify and implement distributed systems.

DNS is a distributed, replicated name service whose
primary purposes are to map host names into corre-
sponding Internet addresses, map Internet addresses into
hostnames, and locate daemons for electronic mail trans-
fer [12, 11]. Its name space is organized as an unbal-
anced tree, which, in late 1991, consisted of 16,000 dif-
ferent internal nodes known as domains and 1,000,000
leaf nodes corresponding to individual computers [8].
Essentially, all of these computers are clients of DNS.
DNS client software is known as a resolver, and at least a
dozen resolver implementations exist [7]. Some of these
implementations have been re-released to repair various
bugs. For example, the popular Berkeley UNIX resolver
and name server software is in its seventh public release
(BIND 4.8.3), and its source code lists four additional
versions that were not released. We speculate that many
more than thirty different versions of resolvers are cur-
rently in use by various UNIX, VMS, Maclntosh, and
IBM PC computer systems.

The NSFnet Information Service reports that over
the past two years the fraction of wide-area packets
caused by DNS has dropped from 14% to 8% [9], while
the volume of packets has doubled (see Figure 1). The
fraction of DNS traffic dramatically dropped in 1990 as
older, buggy versions of resolvers were upgraded. Ilow-
ever, since early 1991, this fraction has stopped declin-
ing and may be increasing. One might argue that this
fraction is not significant because DNS traffic consti-
tutes less than 5% of the bytes transferred over the
NSFnet because DNS packets tend to average a hun-
dred bytes, which is smaller than the average packet on
the NSFnet. While this is true, one should not take too
much solace in this lower number because routing costs
depend on packet count rather than packet size.

Most every wide-area TCP [14] conversation, whether

281

7x10'

Total Packets

90 902 904 906 508 91 912 914 96 G188 92
Year

Percent Packets

90 902 904 906 908 91 912 914 916 918 92
Year

Figure 1: DNS contribution to NSFnet backbone packet
counts for the past two years.

it be mail, telnet or ftp, begins with two or three DNS
requests. During an rlogin from caldera.usc.edu to van-
gogh.berkeley. edu, the initiator, caldera, maps hostname
vangogh.berkeley.edu into an IP address (128.32.133.1).
Vangogh, upon receiving the rlogin request, maps cal-
dera’s network address back into its hostname. Some
implementations, as an additional security measure, map
this hostname back to an IP address. Of course, this
might not generate wide-area traffic because either or
both of these mappings could be cached locally. Figure
2 illustrates the near worst case number of DNS trans-
actions for this rlogin. Caldera first queries a replica of
the root domain for the addresses of name servers for
berkeley.edu. The root name server returns the list of
servers for the berkely.edu domain. It can do this be-
cause most root name servers replicate the .edu domain
as well. Caldera queries one of the berkeley.edu servers
for hostname vangogh.berkeley.edu. Vangogh, upon re-
ceiving the rlogin request, queries a copy of the .in-
addr.arpa name server for a name server that can trans-
late caldera’s network address, and then queries this
name server.

Starting a new wide-area TCP conversation could
require six wide-area remote procedure calls and twelve
packets, but caching should eliminate most of these calls.
Since the average TCP conversation currently sends a-
bout 200 packets, 100 in each direction [3, 1], one would
expect the fraction of wide-area packets due to DNS
would be less than 12/200 or 6%. The fact that 8%
of wide-area packets belong to DNS either means that
name caches are not functioning properly or something
is fundamentally wrong.

tool & .edu
name server

in-addr.arpa name server

berkeley.edu name server

vangoghberkeley.edu

use.cdu name server

1, Caldera.usc.edu asks root for a berkeley.edu server.

2, Caldera.usc.cdu asks berkeley.cdu about vangogh.berkeley.edu.

3. Vangogh.berkeley.edu asks the in-addr.arpa server to map
calderausc.edu’s IP address into a host name.

4. The in-addr.arpa server chains this back to the usc.cdu server.

5. Vangogh.berkeley.edu may go back to the root server to look up
ausc.edu server,

6. Vangogh.berkeley.edu maps the hest name returned in siep 3 into
an [P address.

Figure 2: DNS traffic caused by one rlogin.
2 Performance Issues

When considering the performance of any replicated,
distributed name service, the obvious issues are the cach-
ing mechanism, the RPC retransmission timeout algo-
rithm, and the algorithm for selecting alternative name
servers. When DNS was initially deployed, these mech-
anisms were intentionally left unspecified because good
solutions were not yet known. Perhaps this was done
to separate the specification of mechanism and policy
[4]. Today, nine years after DNS’s initial deployment,
reasonable solutions for each of these issues are known;
this section presents one such solution.

2.1 Caching

DNS name servers cache responses to their successful
queries. Usually, they do not cache responses indicating
that a name is bad or indicating that the requested re-
source record is not bound to the queried name. Caching
bad names or the absence of a resource record in order
to answer future queries quickly is referred to as nega-
tiwe caching. The person managing a DNS domain as-
signs to each of the domain’s resources a period of time,
called a time-to-live, that other name servers can cache

282

it. Whenever a cached value is passed to another server,
its time-to-live is reduced by the time it has remained
in cache. Typical time-to-live values range from one to
six days, and a value of zero disables caching.

Notice that the name server performs caching, not
the client resolver code that users link with their pro-
grams. This has serious implications for a site with hun-
dreds or thousands of computers, like a college campus.
Every time a program issues a query, its resolver sends
it to a name server. Well-run sites funnel all of their
queries through a handful of local name servers. For ex-
ample, each computer at our university sends its queries
to one of ten local name servers. The likeliness of find-
ing a working name server increases with the number
of central servers. Ten is probably too many because it
increases the likeliness that our site issues extra queries
on the wide-area network. All ten servers may request
the same name over the wide-area network, and, be-
cause each server sends less traffic, the quality of their
wide-area RPC service time estimates decreases.

Surprisingly, several large sites have yet to channel
their requests through central servers. Instead these
sites run caching-only servers on each node which en-
dows each node with a private cache. The effect of
this policy can be seen in our traces which show four
instances of 500 computers on a single campus issuing
the same query. In two cases these queries targeted the
same good name, and in two cases these queries targeted
the same bad name. We believe neither site funnels re-
quests through common, central name servers, but both
employ caching-only servers on their individual nodes.
The effectiveness of DNS name caching is discussed in
Section 4.

2.2 Retransmission Algorithms

The most widely-used resolver and name server are dis-
tributed with Berkeley UNIX and, as mentioned above,
are now in their seventh public release (BIND 4.8.3).
This software is available by public ftp from fip.uu.net,
and is an example of a relatively bug-free implementa-
tion. Nearly all DNS transactions employ the UDP un-
reliable datagram protocol to avoid the additional mes-
sages and latency to set up and tear down a TCP con-
nection. This places the issue of retransmissions on the
user program. This section summarizes the retransmis-
sion algorithms employed by the Berkeley resolver and
name server.

2.2.1 Resolver algorithm

The Berkeley resolver queries a maximum of three name
servers for any request. This is parameterized and can

be increased. The resolver sends the query to the first of
the three servers and waits for a timeout. If it receives
no reply, it sends it to the second server and waits. If it
times out without receiving a reply from either server,
it sends it to the third server and waits. If it times out
again without receiving a reply from any of the three
servers, it doubles the timeout interval and tries the
three servers in sequence again.

The initial timeout interval is set to the maximum
of 1 second and the integer part of 5 seconds divided by
the number of servers. In this case the timeout starts
at [5/3] = 1 second.

A server is tried no more than four times; thus, a
total of 12 queries might be sent before giving up. Each
of these queries carries an identifier that must match
any response. The Berkeley resolver does not change
this identifier upon retransmission. The resolver does
not care which server responds nor which query packet
generated this response.

2.2.2 Name server algorithm

The Berkeley name server keeps track of up to 16 dif-
ferent server addresses to resolve a request. It keeps
the possible servers sorted by their expected response
time to previous queries and queries the addresses in
this order. It cycles through the servers up to three
times, except when infinite looping occurs. The base
retransmission timeout is set to the larger of 4 seconds
and twice the expected service time of a server. After
completing a cycle, it doubles the retransmission time-
out, although in all cases this timeout is limited to 45
seconds.

If a response to a query is a pointer to another
name server or an instruction to try a different cenoni-
cal name, looping might occur. A canonical name is an
alias for the query name; for example, castor.usc.edu is
an alias for girtab.usc.edu. The server limits itself to a
total of 20 referrals or 8 canonical name substitutions. If
no referrals or canonical name substitutions occur, the
server returns with status server failure after completing
the cycle of 16 - 3 = 48 queries. The only exception to
this occurs with queries for the set of root name servers.
These are called system queries and are repeated hourly
until they succeed.

The server drops retransmitted queries if it is still
trying to resolve the original query. That is, if the
server receives a retransmission of a request for which it
is recursively querying another server, it does not pro-
cess this new request. When the server has an answer,
it forwards it to the resolver or name server as an an-
swer to the original query. The name server records the
query-identifier sent to it by the requester and uses this

283

identifier when it responds. It assigns a new identifier
to queries that it forwards, and uses this new identifier
for all retransmissions of that query. However, it gener-
ates a new identifier each time it substitutes canonical
names or is referred to a different server.

Name servers need to be primed with the host names
and addresses of several root name servers. This list is
stored in the file system and can become inconsistent
over time. A name server generates a system query when
it uses its priming list to get a complete list of root name
servers, which it caches for the indicated time-to-live.

2.3 The net effect

A Berkeley name server will send up to 3 requests to
each address of another name server to resolve a query
it receives. Since a resolver could query up to 3 name
servers, a single query destined to an unreplicated, un-
reachable server would lead to about 9 query packets.

Because a name server must be able to contact at
least one root server, system queries receive special treat-
ment and are retried every hour until they succeed. This
implies, for example, that if only one of two addresses
in the priming file is good and this server is down, a
total of 3x24 = 72 requests would be directed towards
this server in the space of 24 hours. The same number
of packets would be sent to the bad address.

Section 4 analyzes the effect of name server failures
on other resolvers and name servers with more aggres-
sive retransmission algorithms than the ones reviewed
here.

3 Traces

This study is based on two 24-hour packet traces col-
lected from DNS root name server a.isi.edu! and three
other name servers that replicated various domains. Fig-
ure 3 illustrates the network configuration. The root
name server had network interfaces on the Milnet and
an Ethernet that lead to the Internet via the Los Net-
tos regional network. Note that the root was not a
BIND name server. All four servers had interfaces on
this same Ethernet. A fifth workstation, a Sun SPARC-
station 1 with 10 millisecond clock resolution, collected
all DNS packets that traversed the Ethernet, including
DNS packets with both source and destination on the
local Ethernet.

1We would have liked to collect at least one more trace. Un-~
fortunately, by the time we had the analysis program working
correctly, this node had retired and was no longer a root name
server.

Root Name Server
Internst (a.isi.adu)
Interface

128.9.0.127

Milnet
Interface
26.3.0.103

” Milnet

Name Server for
isi.edu ln.net
dart.net ftp.com
aero.org and .us
(venera.isi.edu

Collection
Machine

Name Server for
isi.edu mosis.edu
darpa.mil fne.gov
cac.com and .us
{vaxa.is.edu)

Name Server for
isi.edu fna,gov
and darpa.mil

~J- (charm.isi.edu)

128.9 Ethernet and gateway to Los Nettos
Reglonal Network and the Internat

Figure 3:

servers.

Network configuration and traced name

Only packets sent over the Ethernet were collected.
Queries arriving at the root name server’s Milnet inter-
face could not be traced. Surprisingly, however, replies
to most of these queries were collected. As it turned
out, to avoid per-packet networking charges on the Mil-
net, this machine manually routed packets not destined
to the Milnet over the Ethernet to the Internet. Con-
ceivably, some of these return routes were down. That
is, the server was reachable on the Milnet, but the re-
sponses were dropped in the Internet. Qur traces did
not show evidence that this occured frequently. We re-
constructed the majority of queries to the Milnet ad-
dress from the responses captured on the Ethernet, and
estimated the arrival rate of queries at the Milnet inter-
face by assuming that the request to response ratio for
the two interfaces were nearly the same. Thus, the es-
timated request rate was calculated as the request rate
at the Internet interface multiplied by the ratio of the
Milnet response rate to the Internet response rate.

3.1 Trace Collection

The collection machine used a network interface tap
(NIT) program [10] to collect all TCP and UDP DNS
packets, including non-transit local trafic. More than
98% of the bytes and packets were sent by UDP; for
simplicity we did not analyze TCP packets. Table 1
summarizes the two traces. NIT recorded that fewer
than 1% of packets were lost to overflowed NIT buffers.
The only other place that packet loss could occur was
the network interface.

284

Trace Packets
udp tep dropped | wide-area
5/91 944,164 | 8,889 2,913 880,370
(277,739) | (277,739)
9/91 | 1,075,921 | 14,377 8,176 903,652
(268,928) | (268,928)
Total | 2,020,085 | 23,266 | 11,089 1,784,022

Table 1: Summary of traces. Derived Milnet query
counts are indicated in parenthesis.

3.2 End-to-end loss rate

We derived a method to calculate end-to-end loss rate
because our collection machine’s network interface does
not count dropped DNS packets. Although the end-
to-end loss rate that we calculated was below 1%, we
review this technique here because it can be applied
to estimate loss rate for traces of any request-response
protocol. The method assumes that the three name
servers that provide domain isi.edu can reply quickly to
queries against this domain by computers on the local
Ethernet. This assumption means, for example, that if
zephyr.isi.edu queries name server charm.isi.edu for the
network address of venera.isi.edu, that charm transmits
its response before zephyr gets impatient and retrans-
mits its query. This assumption means that requests
and responses come in pairs. If charm misses the re-
quest and fails to transmit a response, then this loss is
charged to our collection machine.

Denote the total number of local queries transmitted
during tracing by n and the probability that the trace
gathering program loses a packet by p. The probability
of capturing the query but dropping the corresponding
response is (1 — p)p. The probability of capturing the
response but not the corresponding request is also (1 —
p)p, and the probability of capturing both the request
and response is (1 — p)?2.

Denote the number of unmatched local queries by ¢,
the number of unmatched responses by r, and the num-
ber of matched query-response pairs by m. Summing
the number of unmatched queries and the number of
unmatched responses leads to

2np(l—p) = r+q.

The number of matched query-response pairs on the
trace, m, should equal the probability of capturing both
the query and its corresponding response multiplied by
the total number of local query-response pairs, n,

n(l - p)> =m.
Dividing the first equation by the second leads to

2np(1 —p)/n(1-p)* = (r+q)/m,

3 x104 . . .
E o, Sept. 1991 s -Req. Rate a.isiedu
§ A " :Resp. Illlale adsiedn i
iy B { Vst s g
& KN
-] EY e
2 1 ’v" e S bATeAn s Rineg, quminse senert®
z 0 A A Il

0 5 10 15 20 25

Time (in hours)

3 x10¢ .
g May 1991
§
%
§
z

25

Time (in hours)

Figure 4: Request and response rate at root name
servers.

2/(1-p) = (r+g)/m.

Carrying out the algebra yields the loss rate

r+g
m

We calculated the collection’s loss rate by computing
m, r, and ¢ for local queries to name server charm, and
estimated a trace loss rate of 0.77% for the new trace
(m=13490, r=115, q=97).

3.3 Query and response rate

Figure 4 plots the query and response rate measured
from the root name servers, and Figure 5 plots the re-
quest, response, and chained request and response rates
for name server charm. Chained requests occur when
a name server issues its own query to answer a query
that it received. Chained responses are the answers to
chained requests. Several points merit attention. In the
second trace, the root name server was only up for nine
hours. It first recovered in the seventh hour of the trace
and crashed again nine hours later. In addition, the
high arrival rates for name server charm on the second
trace were caused by a single host; this is explained in
the next section.

285

2
=3

s Sept 1991 ChuincGReq Rae -
e]
g 6000 .- -
E 4000 Chaimdl'('cs.p. Rm o
8 . <" Reg, Rate N
_’ézooo T Resp Rt
Z n L i i i
) 5 10 15 2 25
Time (in hours)
; 500 ; ’ . .
£ 4o May 1991 1
o
4§ 300, .
[
“§ 2000 i
5 100F .. R
2 " . : e
0 5 10 15 2 25
Time (in hours)

Figure 5: Request, response, and chained request and
response rates at one of the other three name servers.

5/91 9/91
Minimum necessary queries | 43,535 15,787
Preventable queries 9,945 4,395
Total query packets 695,899 | 985,518
Possible improvement 16 61

Table 2: Possible DNS performance improvements.

4 Analysis

Analysis of the DNS traces shows that DNS consumes
at least twenty times more wide-area bandwidth than is
strictly necessary. This section explains the reasoning
that leads to this conclusion and attempts to quantify
the factors contributing to this performance. DNS bugs
tend to exacerbate one another, and this complicated
the analysis. This section starts by estimating the ab-
solute minimum number of queries and packets that we
would expect if all computers implemented DNS per-
fectly. Then it describes some of the difficulties in clas-
sifying DNS errors, presents the classification scheme
that we devised, and discusses wide-area DNS perfor-
mance using our scheme.

The first entry in Table 2 estimates the minimum
number of query packets that the name servers would
have received had name caching and negative caching
been perfectly implemented throughout the Internet. It
excludes preventable queries as explained in the next
paragraph. If local caching worked perfectly, regardless
of the number of computers on a given network, the
network would query for a name only once per day, as-
suming that most data items have time-to-lives on the
order of a day or more and that name servers do not

fail.

The table’s second entry adds preventable queries to
the first number. One form of preventable query oe-
curs when a resolver wildly appends a domain name
to the original query name as a helpful search feature.
A sample preventable query from the September trace
is bart.mit.edu.dec.com, where some resolver appended
dec.com to the otherwise good name bart.mit. edu.

The table’s third entry lists the number of query
packets on the trace, and the fourth entry lists the ratio
of query packets to minimum necessary queries. This is
our justification for conservatively claiming a bandwidth
reduction of a factor of twenty.

4.1 An imperfect world

Various name server and resolver bugs interact with one
another. Nearly 9,500 copies of query bart.mit.edu.dec.-
com were sent to both addresses of the root name server
by three different Digital Equipment Corporation name
servers. The root name server responded 3,097 times.
We suspect that more copies of this query were sent to
other root name servers as well. The same three name
servers queried the root name server another 8,375 times
for bart.mit.edu and received 2,688 replies.

What happened here? Some resolver sent the query
for bart.mit.edu to one of its name servers. This name
server tried to resolve the name with our root name
server, but this name server was down. The resolver
timed out and queried the other two name servers. Pos-
sibly the priming lists of root name servers for these
three name servers were out of date, and none could
find another root server to resolve the name. This is
supported by the fact that all three name servers queried
hundreds of times for a copy of the root domain while
the root server was down. When the resolver failed to
get its answer, it generated a query for bart.mit.edu.-
dec.com and sent this to all three name servers. All
three name servers queried both names until the server
recovered. When the root server recovered, it responded
that dec.com was the appropriate domain to contact
for query bart.mit.edu.dec.com and that mit. edu was the
appropriate domain for query bart.mif.edu. The name
servers did not accept these responses, but kept query-
ing both names several thousand more times.

How should this bug be classified? These servers and
resolvers suffer from a combination of problems. The re-
solver constructs preventable queries. The name servers
probably are not properly primed with alternate roots,
do not detect server failure, do not backoff their retrans-
mission timeouts properly, probably don’t cache prop-
erly, and suffer from a form of looping because they do
not forward queries properly. Nevertheless, this section

286

Error Class Packet Count
05/16/91 | 09/27/91

Recursion bug 189,868 172,482
Zero answer bug 14,947 52,597
Server failure detection 13,537 405,972

(Milnet Packets) | (12,860) | (333,180)
Name error bug 93,465 26,330
Centralized caching - -
Negative caching 6,136 701
Retransmission timeouts 636 488
Leaky caches 24,103 6,320

Table 3: Query packet counts due to specific errors.
This table ignores queries packets to and from the Mil-
net interface.

describes how we managed to classify name server inter-
actions from thousands of different servers and resolvers,

many of which exhibited rather bizarre behavior?.

4.2 Error Classification

Table 3 lists the seven classes of DNS implementation
errors that we identified. The table estimates the num-
ber of packets due to each type of error.

4.2.1 Recursion

The implementation error that consumed the most wide-
area bandwidth is a recursion or looping error. This oc-
curs when a response to a query contains no answer, but
contains a list of other name servers to contact. Partic-
ularly pernicious servers include themselves on this list,
causing naive name servers to resend their query back
to the same name server. Longer loops are possible.
For example, on the September trace, two such queries
caused 259,529 and 223,575 packets respectively, about
half of the entire trace. In both cases, a machine at
IS1, zephyr.isi.edu queried name servers venera.isi.edu
and charm.isi.edu for the host name that corresponded
to particular internet addresses (in-addr.arpe queries).
In both cases, the ISI name servers contacted remote
servers that included themselves on the list of other
name servers to contact. The second case involved three
such servers replicating the same domain. This problem
was exacerbated by zephyr, which issued this query ev-
ery five seconds throughout the trace. Note the differ-
ence in the request and chained request rates at name
server charm in Figure 5 for the two traces. The root
name server was the victim of recursion errors in both
traces. Negative caching would have contained these
queries to IS’s Ethernet.

2We admit that a classification of “brain-dead” was tempting.

We place a query in this class when it receives a
reply with no answer, no error indication, but a list of
additional servers to contact. This is reported in the
first entry of Table 3.

4.2.2 Zero answer bug

The zero answer bug was introduced in an old release
of SunOS [13] and is still responsible for a good deal of
DNS packets. In this error, a server responds that the
requested resource record bound to the requested name
doesn’t exist, but that the name is valid. Many resolvers
retry this query or contact the other servers on the list,
causing recursion.

We place a query in this class when it receives a
reply with no answer, no error indication, and no list
of additional servers to contact. This is reported in the
second entry of Table 3.

4.2.3 Server failure detection

Many servers and resolvers do not detect server failure3,
do not exponentially back off their query rate, and are
not primed with a good list of root servers. Figure 6
plots the number of packets sent to the root server’s
Internet interface during two long crashes. The upper
graph plots the probability that a host sends less than a
certain number of packets. The lower graph plots the cu-
mulative distribution of the contribution to total packet
count of hosts that send less than a certain number of
packets.

Only 10,616 unique queries caused 437,820 packets.
Because the arrival rate at the Milnet interface is usually
close to 90% of the rate at the Internet interface, we
estimate that 771,000 packets were actually sent.

During the first failure, 61% of name requests sent
just one packet; some other server must have resolved
the name. For the second failure, this number was 37%.
Despite the fact that about half of the hosts responded
correctly to the server failure, the other half sent a met-
ric ton of packets. This is reported in the third entry of
Table 3.

4.2.4 Name error bug

When a server responds that a name is bad (it almost al-
ways does this authoritatively for lack of negative cache-
ing), the requester should be satisfied. If the server does

3Paul Mockapetris told us of one name server implementation
that, when it fails to receive a response from a server, sets its esti-
mated round trip time to a compile time constant like 6 seconds.

287

TR EEEY T
|
§ o6k’ -~ Ist. fail ; ... 2nd. fail |
E 04 r" |
0.2}
c TRNRITY Ml d LA LALL Lenededed LLLLL s Lttt Al Lol
100 10 102 10 104 108
Number of Packets per Host-Query Name Pair
1 L e e F ana
N 08k -, 18t fail ; 2nd. fail W
IS
§ 0.6t J
g 04} i :
102 10 104 108

Number of Packets per Host-Query Name Pair

Figure 6: Response to server failure.

not return a list of additional servers to contact and the
query is retransmitted more than three times, we clas-
sify this as a special form of the zero count bug. We call
this a name error bug, and the fourth entry in Table
3 lists the number of additional query packets that it
caused.

Recall that Table 2 identifies the number of pre-
ventable queries caused by badly implemented resolver
search lists. The two traces had 10,270 and 1,274 queries
for unpreventable name errors, and 9,945 and 4,395 quer-
ies for preventable name errors. Preventable name er-
rors can evoke other bugs, as described above. We do
not attribute packet counts in Table 3 for preventable
name errors. If a preventable query evokes one of the
listed errors, its query counts are reflected in the appro-
priate row of Table 3.

4.2.5 Centralized caching

Most domains already channel their requests through
centralized caches. Figure 7 histograms the probabil-
ity of receiving the same query from one or more hosts
within a domain. Note that the log-log plot accentu-
ates the high host count cases. The average number of
hosts within a single domain issuing the same query is
1.067 and 1.049 on the old and new trace respectively.
There are singular exceptions. Over 600 machines at
MIT and over 100 machines at CERN queried for the
list of root servers. Over 100 machines at CMU made an
in-addr.arpa query for dist.fac.cs.cmu.edu. Otherwise,
the low average number of hosts per query indicate that
centralized caching is nearly completely in place. Only
a handful of domains exhibit more than ten hosts per

288

query, and except for the examples mentioned above,
these were all the result of defective resolvers unsatis-
fied with zero-count answers. We do not measure this
effect in Table 3. Frequently, requests from many hosts
within a domain indicate some other type of error is
occurring.

4.2.6 Negative caching

Assume that everyone employed centralized caching and
corrected their DNS implementation errors. What addi-
tional benefits would negative-caching accrue? In both
traces, nearly 500 machines at CMU queried the name
error THISHOST, and over 100 machines at MIT queried
the name error 0.0.0.0.in-addr.arpa. On the old trace,
about 100 instances of twenty-six and twenty-seven hosts
from Johns ITopkins Applied Physics Lab tried to resolve
variations on the theme “LABEL INVALID”.

Our measurements indicate negative caching would
eliminate 7111 packets. This pales in comparison to the
number of packets caused by other types of bugs. Recall
from Table 2 that more than half of current name error
queries are preventable and due to poor resolver search
paths. The remaining name error queries are mostly
typos that probably will not be repeated. Certainly the
THISHOST and 0.0.0.0 queries are due to buggy, shared
software.

The conclusion we draw about negative caching is
that it serves as a safety valve to protect the wide-area
network from malicious and wild user programs. Im-
plementing negative caching on a server does not re-
duce wide-area traffic if some remote resolver or server
is the source of the queries. If a site employs nega-
tive caching on its central name servers, then this site
protects the wide-area network from resolvers on its ma-
chines. We believe it is first preferable to focus on fixing
bugs, and afterwards, as needed, to implement negative
caching. Currently, the benefits of negative caching are
overstated.

4.2.7 RPC Timeouts and Cache Leaks

We started this project to study the performance of
wide-area RPC and the effectiveness of name caching.
Currently, implementation flaws reduce the importance
of these two issues. Nevertheless, we attempted to study
the effectiveness of RPC timeout selection algorithms by
restricting our attention to queries that received posi-
tive answers. Insisting on an answer avoids DNS flaws
having to do with zero answer counts.

Distinguishing between excessively short RPC re-
transmission timeouts and cache leaks requires making
an arbitrary distinction. We declared queries retrans-

104 e e e R AL =TT T

E WE May 1991 ;
$
g 10f }n 1
A b o e Mg
100 10! 102 108
Number of Hosts per Domain and Query Name

105 ———rrr T Saas"
Sept. 1991 3

g

Number of Occurrences
2

At 1 1iime S AU LN

100 100 102 103
Number of Hosts per Domain and Query Name

Figure 7: Multiple name servers and resolvers.

mitted within a minute as due to poor timeout estima-
tion and all others as due to cache leaks*. The last two
entries of Table 3 estimate the number of extra query
packets due to retransmitting requests too quickly and
due to cache leaks.

These numbers are estimates for many reasons. DNS
uses the unreliable datagram protocol, and responses
captured on the trace may not be received at the desti-
nation. Users may abort a program, but then reexecute
it so quickly that it looks like a retransmission. The
quality of retransmission timeouts should be reevalu-
ated as bad DNS implementations disappear.

4.3 DNS Replication

The number of times that a domain is replicated across
alternate servers affects DNS’s performance in two ways.
Resiliency to individual server failures increases with the
degree of domain replication. Unfortunately, the sever-
ity of DNS bugs having to do with zero answer counts
and recursion from forwarding lists increases with the
degree of replication. Our traces showed that hundreds
of buggy name servers sent packets to both network ad-
dresses of the ISI root name server. This leads us to
speculate that some buggy implementations probably
inundate all replicas of a domain with the same bad
queries.

The root domain, now and when our traces were
taken, is replicated seven times. Our root server re-
ceived approximately 657 and 532 thousand queries in

4Someone really ought to study the choice of time-to-live
values.

Number of Occurrences
g
L4 st Lo

100 " i —

1 2 3 4 S 6 7 8 9 10
Level 2 Replication Degree - Servers per Domain

diteeun oo vevun g4l

Number of Occumences

3

=3

1 2 3 4 5 6 7 8 9
Level 3 Replication Degree - Servers per Domain

Figure 8: Number of servers replicating second and third
level domains.

our two traces, or about 7 requests a second. It re-
sponded to three-quarters and one-quarter of these quer-
ies in the May and September traces respectively, for
about 1,149 and 665 thousand wide-area packets. Note
that in the later trace the server was only working for
nine hours. We suspect that the other six root servers
were involved in loops and zero count bugs for many
of the same queries. However, we do not have data to
support this.

In May 1991, NSFnet reported 11 million DNS pack-
ets per day. The ISI root name server sent and received
approximately a million wide-area packets the day we
traced. If the other six root servers also sent and re-
ceived about the same number of packets, then the root
servers sent or received 7 million DNS packets per day.
Suppose half of these 7 million packets traversed the
NSFnet. Then the root name servers contributed about
a third, 3.5/11, of the DNS packets on the NSFnet.

We wrote a program that traversed the naming tree
of the .edu domain, and computed the degree of repli-
cation of second level (e.g. berkeley.edu) and third level
(e.g. cs.berkeley.edu) servers. This is plotted in Fig-
ure 8. Note how all second level domains are replicated

. at least twice, and many are replicated three or more

times (Surprisingly, many third level domains are not
replicated at all!). Defective name servers will inundate
all replicas of a given domain.

Note, however, that domain replicas do not run on
individual servers, but that most servers replicate sev-
eral domains. Figure 9 histograms the number of do-
mains that various .edu servers replicate. This means
that when any one of these domains becomes the target

289

§ E
o] E
M]
100 10! 102
Level 2 Replication Degree - Domains per Server
105 SV e
§ 1
% 102}
o f E
% X]
E 10 E
; B H&DEH:\
100 10} 102

Level 3 Replication Degree - Domains per Server

Figure 9: Number of DNS domains replicated on indi-
vidual second and third level name servers.

of a defective name server, it may not just degrade per-
formance for one domain, but may degrade performance
for many domains.

When a domain is updated, all secondary servers for
the domain must update their copy. Secondary servers
periodically check with the primary server to see if the
domain has been updated. The primary copy typically
1s queried four times an hour by each secondary server.
When the domain changes, the domain database is trans-
ferred using TCP in an operation called a zone trans-
fer. Most domains let anyone invoke a zone transfer,
although many large vendors do not. For example, our
program to traverse the DNS name space employed zone
transfers. This leads us to ask if zone transfers impact
wide-area DNS performance?

Although zone transfers employ TCP, zones are trans-
ferred one resource record at a time. If a zone contains
100 resource records, the zone transfer consists of about
a 100 TCP packets and 100 acknowledgements. Our
traces of ISI, UCLA, and USC DNS traffic show only
about 1 to 2% of DNS packets are TCP packets. These
leads us to believe that zone transfers are not a signifi-
cant source of DNS traffic. Figure 10 shows the distribu-
tion of the number of resource records stored in second
and third level .edu domains.

In summary, while replication is supposed to lead to
resiliency, defective servers usually query all replicas of
a domain exhaustively while searching for an answer.

1 e e e L LR A1 T

o3}
06}
04b

Probabitity {]

0.2f

0 L (RTINS I W RE T Loty

100 10t 102 10% 104
Level 2 Domain Sizes (in number of Resource Records)

1 L a2 e e e e L e e — T

Probability [}

P W S S ER T PRI

100 10t 102 108 104
Level 3 Domain Sizes (in number of Resource Records)

Figure 10: Distribution of number of resource record in
the .edu domain.

4.4 Assessment

As older resolvers and name servers are replaced with
bug-free implementations, wide-area traffic due to DNS
will dramatically decrease. One perniciously paired name
server and resolver can easily cause a million wide-area
DNS packets a day. Clearly, network managers must in-
stall bug-free DNS software that limits retransmissions
from servers and resolvers, uses good backoff algorithms,
channels naming requests through a small number of lo-
cal name servers, and implements resolver search lists
correctly. We believe, however, that this will not quickly
solve the problem.

The success of this approach depends on the man-
agers of the various computers and name servers, and
trusts that vendors introduce no new bugs in their nam-
ing software. Such assumptions are naive, and this ap-
proach ignores the essential ingredient for getting good
performance out of computer systems: active error de-
tection.

5 Error Detecting Servers

Systems must be designed to monitor their own behav-
ior and seek to identify misbehaving components. Most
implementations overlook this ingredient on the grounds
that it degrades common case performance. The truth
is that DNS now consumes about twenty times more
bandwidth than it should. The cost of mechanisms to
identify misbehaving implementations would be quickly
recovered, and these mechanisms would increase Inter-

290

net reliability by identifying sources of trouble.

Servers should detect common implementation er-
rors in other name servers and resolvers. This is not
to say that we recommend that every packet be traced.
Of course, doing so reveals fascinating things: for ex-
ample, some IBM PC/RT at Stoneybrook sends unso-
licited empty DNS response packets to the ISI root name
server every ten minutes. Although fascinating, this is
not a common error and really doesn’t affect wide-area
DNS performance. On the other hand, experience shows
several types of common errors are worth checking for.
Many DNS name servers and resolvers suffer from zero
count and recursion bugs, don’t back off their retrans-
mission timers, and don’t deal with server failures grace-
fully. These bugs cause trouble and merit attention.

5.1 Feigning Death

A name server can detect bad behavior to server fail-
ure, bad root server priming caches, and bad retrans-
mission timeout algorithms, if it occasionally feigns to
be dead. It need not feign total rigor mortis. Rather
every 200 or 300 queries it selects a name from some
query and decides not to answer queries for this name
for the next five minutes. During this time it records all
attempts for this name in a data structure. If a server
tries to query the name more than two or three times or
if many servers from the same domain request it, it is
likely that this domain does not deal with server failure
well. The server can keep a log file of the network ad-
dresses, domain names, and packet counts of suspicious
cases. After 5 minutes, it can garbage collect the data
structure and return to normal behavior.

5.2 Bean Counting

The typical name server is too patient. You can ask
it the same stupid question ten thousand times, and
each time it will spit back the same answer. People are
not this patient. Name servers should maintain a data
structure, indexed by query name, that maintains the
network addresses, request and response packet counts,
and the timestamp of the most recent query. This data
structure can be garbage collected as the timestamps
grow old. If a garbage collected entry has too high of
a packet count, this should be written to the log file.
If a live entry’s packet count grows too high, and the
response code of this query indicates the query has zero
answers, the remote resolver or name server may be suf-
fering from a zero count or recursion bug.

A name server could even elect to tell a white lie that
breaks endless cycles and then log the occurrence. For
example, for name-to-address queries, the server could

return the requestor’s IP address in place of a zero count
answer. Unfortunately, because application programs
do not anticipate receiving incorrect answers, this may
not work well.

Servers could also flag time-to-live values orders of
magnitude larger or smaller than the recommended 24-
48 hours.

5.3 Policing

Once a day, our name server should spawn a process that
reads the log and sends electronic mail messages to the
managers of machines or domains with defective naming
implementations. Similar functionality could be imple-
mented at wide-area network switches. These switches
could snoop on name traffic and check for anomalies.
Policing will quickly accomplish what hope and patience
has not; it will fix naming.

6 Conclusions

The portion of wide-area network traffic due to DNS will
decrease as defective name servers and resolvers are re-
placed, assuming no vendor releases another devastating
bug. If, for example, all implementations followed the
Berkeley name server and resolver algorithms (see Sec-
tion 2), wide-area DNS traffic would decrease by a fac-
tor of twenty and perhaps more. Analysis of our traces
indicate that negative caching is unnecessary in an In-
ternet of properly run name servers. Negative caching
can serve, however, as a firewall between a wide-area
network and malicious or badly broken programs.

We doubt, however, that an entire Internet of cor-
rectly implemented resolvers and name servers will e-
merge. As old implementations are corrected, buggy
new implementations will arise from vendors, operat-
ing system changes, and bridges between heterogeneous
naming systems. Given that a defective resolver and
name server can generate a million wide-area packets a
day, we recommend that name servers for DNS, other
naming systems [5], and resource discovery systems [6]
actively check for defective implementations. We are
currently writing such software for the Berkeley BIND
name server [2]. We hope to install this software into a
root name server in the coming months.

Acknowledgements

Our thanks to Andrew Cherenson, Paul Mockapetris
and Mike Schwartz for their thoughtful comments. Our

291

thanks to Daniel Zappala for proofreading drafts of this
paper. Chyifeng Ding worked on this project and de-
serves credit for conceiving the loss rate estimation meth-
od. Vipul Gore helped revise Chyifeng’s trace analysis
program. We are also grateful to Danny Mitzel, Walt
Prue, and Jim Koda, who helped collect various DNS
traces at ISI, UCLA, and USC.

References

[1] John Crowcroft and Jan Wakeman. Traffic analysis
of some UK-US academic network data. Techni-
cal report, University College London, September
1991.

[2] Peter Danzig. Probabilistic error checkers: Fixing
DNS. Technical report, USC, February, 1992.

[3] Peter B. Danzig, Sugih Jamin, Ramon Caceres,
Danny J. Mitzel, and Deborah Estrin. An artifi-
cial workload model of TCP/IP internetworks. To
appear in the Journal of Internetworking: Practice
and Frperience, 1992.

[4] Roy Levin et al. Policy/mechanism separation in
HYDRA. Proc. 5th Symp. on Operating Systems
Principles, 1975.

[5] International Organization for Standardization. In-
formation Processing Systems — Open Systems In-
terconnection — The Directory — Overview of Con-
cepts, Models, and Service. Technical report, In-
ternational Organization for Standardization and
International Electrotechnical Committee, Decem-
ber 1988. International Standard 9594-1.

[6] Robert E. Kahn and Vinton G. Cerf. The digi-
tal library project Volume 1: The world of Know-
bots. Technical report, Corporation for national
Research Initiatives, 1988.

[7] W. Lazear. Milnet name domain transition. RFC
1031, November 1987.

[8] Mark Lottor. Internet domain system. In ACM
Forum, CACM, 34(11), November 1991.

[9] Merit/NSFnet Information Services. Link Letter,
3(6), January/February 1991.

[10] Sun Microsystems. Network Interface Tap. SunOS
4.0 Documentation.

[11] P. Mockapetris. Domain names - concepts and fa-~
cilities. RFC 1034, November 1987.

[12] P. Mockapetris. Domain names - implementation

and specification. RFC 1035, November 1987.

[13] Paul V. Mockapetris and Kevin J. Dunlap. Devel-

opment of the Domain Name System. 1988 ACM
SIGCOMM Symposium, August 16-19, 1988.

[14] J. B. Postel. Transmission Control Protocol. RFC

292

793, September 1981.

