SIAM J. COMPUT. © 1980 Society for Industrial and Applied Mathematics
vol. 9, No. 3. August 1980 X 0097-5397/80/0903-0013 $01.00/0

APPLICATIONS OF A PLANAR SEPARATOR THEOREM*

RICHARD 1J. LIPTONT AND ROBERT ENDRE TARJAN?

Abstract. Any n-vertex planar_graph has the property that it can be divided into components of roughly
equal size by removing only O(Vn) vertices. This separator theorem, in combination with 2 divide-and-
conquer strategy, jeads to many new complexity results for planar graph problems. This paper describes
some of these results.

Key words. algorithm, Boolean circuit complexity, divide-and-conquer, graph embedding, lower

pounds, matching, maximum independent set, nonserial dynamic programming, pebbling, planar graphs,
separatofr, space-time tradeoffs

1. Introduction. One efficient approach to solving computational problems is
«djvide-and-conquer’” [1]. In this method, the original problem is divided into two or
more smaller problems. The subproblems are solved by applying the method recur-
sively, and the solutions to the subproblems are combined to give the solution to the
original problem. Divide-and-conquer is especially efficient when the subproblems are
substantially smaller than the original problem. In this paper we explore the efficient
application of divide-and-conquer to a variety of problems on planar graphs. We
employ the following theorem. '

TueoREM 1 [20]. Let G be any n-vertex planar graph with nonnegative vertex costs
summing to no more than one. Then the vertices of G can be partitioned into three sets A,
B, C, such that no edge joins a vertex in A with a vertex in B, neither A nor B has total
vertex costexceeding%, and C contains no more than 22~/ n vertices. Furthermore A,B, C
can be found in O(n) time.

In the special case of equal-cost vertices, this theorem becomes

CoroLLARY 1. Let G be any n-vertex planar graph. The vertices of G can be
partitioned into three sets A, B, C, such that no edge joins a-vertex in A with a vertexin B,
neither A nor B contains more than 2n/3 vertices, and C contains ho more than 2¥2Nn
vertices.

Corollary 1 verifies a conjecture of Ungar [32], who obtained a similar resuit but
with a bound of O(vnlogn) on the size of C. Itis easy to construct examples to show
that Corollary 1 is tight to within a constant factor in the worst case [20].

Each section of this paper describes a different use of Theorem 1. The results range
from an efficient algorithm for finding maximum independent sets in planar graphs to
lower bounds on the complexity of planar Boolean circuits. In each case, the only
property of planar graphs that we use is Theorem 1, and our results generalize easily to
any class of graphs which can be separated into small components by removing a small
number of vertices. For instance, by employing the following result of Sider, we can
extend our results to graphs of arbitrary genus.

LemMa 121, [30]. Let G be any n-vertex graph of genus g>0. Then there exists a
subset of no more than 2 n vertices whose removal reduces the genus of G by at least one.

* Received by the editors August 9, 1978, and in final revised form September 11, 1979.

+ Computer Science Department, Yale University, New Haven, Connecticut. Now at Computer Science
Division, University of California, Berkeley, California 94720. This research was partially supported by
the U.S. Army Research Office, Grant No. DAAG 29.76-G-0338.

1 Computer Science Department, Stanford University, Stanford, California 94305. This research was
partially supported by National Science Foundation Grant MCS-75-22870 and by the Office of Naval
Research Contract N00014-76-C-0688.

615

616 RICHARD J. LIPTON AND ROBERT ENDRE TARJAN

__THEOREM 2. If G is an n-vertex graph of genus g > 0, there is a subsetof no more than
g\/2n vertices whose removal leaves a planar graph.
Proof. The proof is by induction on g employing Lemma 1. O
We state our results only for the planar case, since it seems the most interesting,
and leave as an exercise the extension of these results to graphs of higher genus.

2. Approximation algorithms for NP-complete problems. Divide-and-conquer in
combination with Theorem 1 can be used to rapidly find good approximate solutions to
certain NP-complete problems on planar graphs. As an example we consider the
maximum independent set problem, which asks for a maximum number of pairwise
non-adjacent vertices in a planar graph. We need the following generalization of
Theorem 1.

THEOREM 3. Let G be an h-vertex planar graph with nonnegative vertex cosis
summing to no more than one and let 0= e =1. Then there is some set C of O(\/n/s)
vertices whose removal leaves G with no connected component of cost exceeding €.
Furthermore the set C can be found in O(n log n) time. ‘

Proof. If ¢ = 1/vn, let C contain all the vertices of G. Then the theorem holds.
Otherwise, apply the following algorithm to G.

Initialization. Let C = .

Genera| Step. Find some connected component K in G minus C with cost
exceeding . Apply Theorem 1 to K, producing a partition Ay, By, C, of its vertices. Let
C=CUC.

Repeat the general step until G minus C has no component with cost exceeding ¢.

The effect of one execution of the general step is to divide the component K into
smaller components, "each with no more than two-thirds the cost of K. Consider all
components that arise during the course of the algorithm. Assign a level to each
component as follows. If the component exists when the algorithm halts, the component
has level zero. Otherwise the level of the component is one greater than the maximum
level of the components formed when it is split by the general step. With this definition,
any two components on the same level are vertex-disjoint.

Each level one component has cost greater than &, since it is eventually split by the
general step. Thus, for i =1, each level i component has cost at least (3)"'¢. Since the
total cost of G is at most one, the total number of components of level 7 is at most
(3)""'/e. In particular, the maximum level k must satisfy 1 = G e = ($)*"'Vn, which
means k = (logs/» n)/2+ 1. Since the time to split a component is linear in its number of
vertices, and since any two components on the same level are vertex-disjoint, the total
running time of the algorithm is O(n log n).

It remains for us to bound the size of the set C produced by the algorithm. Let
K, K>, ..., K, of sizes ny, na, ..., 1y respectively, be the components of some level
i =1. The number of vertices added to C by splitting K, K>, - - -, K; is bounded by
2\/22;:1 Vn. We have [= (3)'"'/¢ and ijl n; = n. For fixed /, the sum Z;Zl Vn; subject
to Yl.in,=n is maximized by setting n;=n/l for 1=/= I; thus 2\/—2—}:511\/n,§
WA= 2V e Y 1t follows that CI=N, 2V2Vn/e(P =
On/e). O

The following algorithm uses Theorem 3 to find an approximately maximum
independent set I in a planar graph G =(V, E). The algorithm uses a function k(n) to
be chosen later.

Step 1. Apply Theorem 3 to G with ¢ = k(n)/n and each vertex having cost 1/n to
find a set of vertices C of size O(n/\/k(n)) whose removal leaves no connected
component with more than k(n) vertices.

A PLANAR SEPARATOR THEOREM 617

Step 2. In each connected component of G minus C, find a maximum independent
set by checking every subset of vertices for independence. Form [as a union of
maximum independent sets, one from each component.

Let I* be a maximum independent set of G. The restriction of I* to one of the
connected components formed when C is removed from G can be no larger than the
restriction of I to the same component. Thus \r* -1 = O(n/Vk(n)). Since G is planar,
G is four-colorable, and |T*| = n/4. Thus (r*|-\h/* = O(1/Vk(n)), and the relative
error in the size of I tends to zero with increasing n as long as k(n) tends to infinity with
increasing n.

Step 1 of the algorithm requires O(n log n) time by Theorem 2. Step 2 requires
O(n; 2™) timeona connected component of n; vertices. The total time required by Step

2 is thus
o(max{ $ p2"| ¥ no=nand O=n= k(n)}) - —”—k(n)z“‘"’) — O(n2 ™).
i1 i=1 k(n)
Hence the entire algorithm requires O(n - max {log n, 2%™} time. If we shoose k(n) =
log n, we get an Of(n %)-time algorithm with O(l/\/log n) relative error. If we choose
k(n)=log log n, we get an O(n log n) algorithm with O(1/Vlog log n) relative error.

3. Nonserial dynamic programming. Many NP-complete problems, such as the
maximum independent set problem, the graph coloring problem, and others, can be
formulated as nonserial dynamic programming problems [3],[27]. Such a problem is of
the following form: maximize the objective function f(x1, - -+, x,), where f is given as a
sum of terms fi(-), each of which is a function of only a subset of the variables. We shall
assume that all variables x; take on values from the same finite set S, and that the values
of the terms fi (-) are given by tables. Associated with such an objective function fis an
interaction graph G = (V, E), containing one vertex v; for each variable x, in f, and an
edge joining x; and x; for any two variables x; and x; which appear in a common term
fi)

We can formulate the maximum independent set problem as a nonserial dynamic
programming problem as follows. Let G = (V, E) be an undirected graph. For each
vertex v, 1=i=n,let x; be an associated variable which can assume a value of either
zero or one. Let the objective function f(xy, x2, " ", x,) be defined by

flxe, x2, 05 Xn) = Y folxnxp)t X oxi
(v,u))eE i=1
where f.(x;, xj) =~ if x;=x; = 1, f.(x; x;) =0 otherwise. Then a maximum indepen-
dent set in G corresponds to an assignment of values 0, 1 to xy1, X2, " ", Xn which
maximizes f; x; =1 means x; is in the independent set, x; = 0 means x; is not in the
independent set. Other graph problems can be formulated similarly. Note that G is the
interaction graph of f.

By trying all possible values of the variables, a nonserial dynamic programming
problem can be solved in 29" time. We shall show that if the interaction graph of the
problem is planar, the problem can be solved in 20W® ime. This means that substantial
savings are possible when solving typical NP-complete problems restricted to planar
graphs. Note that if the interaction graph of f is planar, no term fi () of f can contain
more than four variables, since the complete graph on five vertices is not planar.

In order to describe the algorithm, we need one additional concept. The restriction
of an objective function f =Y, fx to aset of variables x;,, - - -, X; i8 the objective
function f =Y {fx|f« depends only upon xi,- -, xi}.

618 RICHARD J. LIPTON AND ROBERT ENDRE TARJAN

Given an objective function f(x1, "> Xn) = Zlefk and a subset S of the variables
X1, s Xn which are constrained to have specific values, the following algorithm solves
the problem: maximize f subject o the constraints on the variables in S In the
presentation, we do not distinguish between the variables xi, " s Xn and the cor-
responding vertices in the interaction graph.

Step1.1fn < 100, solve the problem by exhaustively trying all possible assignments
to the unconstrained variables. Otherwise, g0 to Step 2.)

Step 2. Apply Corollary 1 to the interaction graph G of f. Let A, B, C be the
resulting vertex partition. Let fi be the restriction of f to A U C and let f, be the
restriction of f to B U C. For each possible assignment of values to the variables in
C - S, perform the following steps:

(a) Maximize f, with the given values for the variables in CUS by applying the
method recursively; '

(b) maximize f» with the given values for the variables in CUS by applying the
method recursively; : oo

{c) combine the solutions to {a) and (b) to obtain a maximum value of f with the
given values for the variables in cus.

Choose the assignment of values to variables in CUS which maximizes f and
return the appropriate value of f as the solution.

The correctness of this algorithm is obvious. If n =100, the algorithm solves at
most Q0o subproblems in Step 2, since Cisof O(~/n) size. Each subproblem contains
at most 2n/3+2\/2\/n§29n/30 variables. Thus if t(n) is the running time of the
algorithm, we have t(n) = O(n)+2°5™ - 1(29n/30) i n = 100, (n) = O(1) if n <100
An inductive proof shows that t(n) §20(V/").

4. Pebbling. The following one-person game arises in register allocation problems
(28], the conversion of recursion to iteration [23], and the study of time-space tradeofls
(41,112}, [25].LetG = (V,E)bea directed acyclic graph with maximum in-degree k. 1f
(v, w)isan edge of G,visa predecessor of w and w is a successor of v. The game involves
placing pebbles on the vertices of G according to certain rules. A givenstep of the game
consists of either placing a pebble on an empty vertex of G (called pebbling the vertex)
or removinga pebble froma previously pebbled vertex. A vertex may be pebbled only if
all its predecessors have pebbles. The object of the game is to successively pebble each
vertex of G (in any order) subject to the constra'nt that at most a given number of
pebbles are ever on the graph simultaneously. ’

It is easy to pebble any vertex of an n-vertex graph in 7 steps using n pebbles. We
are interested 1n pebbling methods which use fewer than n pebbles but possibly many
more than n steps. 1t is known that any vertex of an n-vertex graph can be pebbled with
O(n/logn) pebbles [12] (where the constant depends upon the maximum in-degree),
and that in general no better bound is possible [25]. We shall show that if the graph is
planar, only O(v/n) pebbles are necessary, generalizing 2 result of [25]. An example of
Cook [4] shows that no better bound is possible for planar graphs.

THEOREM 4. Any n-vertex planar acyclic directed graph with maxi
can be pebbled using Q(\/n+ k loga 1) pebbles.

Proof. Leta = 272 and B = 1 Let G bethe graph to be pebbled. Use the following
recursive pebbling procedure. If n =1, pebble the single vertex of G.Ifn>1, find a
vertex partition A, B, C satisfying Corollary 1. Pebble the vertices of G in topological
order.' To pebble a vertex v, delete all pebbles except those on C. For each predecessor

mum in-degree k

! That is, an order such thatif visa predecessor of w, v is pebbled before w.

A PLANAR SEPARATOR THEOREM 619

u of v, let G(u) be the subgraph of G induced by the set of vertices with pebble-free
paths to u. Apply the method recursively to each G(u) to pebble all predecessors of ¢,
leaving a pebble on each such predecessor. Then pebble v.
If p(n) is the maximum number of pebbles required by this method on any n-vertex
graph, then
p(H=1,

p(n)Savn+k+p([2n/3]) if n>1.

An inductive proof shows that p(n)is O(Vn+k logo n). O

It is also possible to obtain a substantial reduction in pebbles while preserving a
polynomial bound on the number of pebbling steps, as the following theorem shows.

THEOREM 5. Any n-vertex planar acyclic directed graph with maximum in-degree k
can be pebbled using on?*’+ k) pebbles in O(n>"?) time.

Proof. Let C be a set of O(n*’?) vertices whose removal leaves G with no weakly
connected component® containing more than n*’? vertices. Such a set C exists by
Theorem 2. The following pebbling procedure places pebbles permanently on the

vertices of C. Pebble the vertices of G in topological order. To pebble a vertex v, pebble -,
each predecessor u of v and then pebble v. To pebble a predessor u, delete all pebbles”

from G except those on vertices in C or on predecessors of v. Find the weakly
connected componentin G minus C containing u. Pebble all vertices in this component,
in topological order. :

The total number of pebbles required by this strategy is o(n*? to pebble vertices
in C plus n*” to pebble each weakly connected component plus & to pebble predeces-
sors of the vertex v to be pebbled. We can bound the number of pebbling steps as
follows. To pebble a vertex v requires d;(v)n?’>+1 steps, where d;(v) is the in-degree
of vertex v. The total pebbling time is thus n+Y,.vd;(v)n*’=n +@Bn -3’ =
on*?. O

5. Lower bounds on Boolean circuit size. A Boolean circuit is an acyclic directed
graph such that each vertex has in-degree zero or two, the predecessors of each vertex
are ordered, and corresponding to each vertex v of in-degree two is a binary Boolean
operation b,. With each vertex of the circuit we associate a Boolean function which the
vertex computes, defined as follows. With each of the k vertices v; of in-degree zero
(inputs) we associate a variable x; and an identity function fu.(x:) = x,. With each vertex
w of in-degree two having predecessors u, v we associate the function fo=b.(fufo).
The circuit computes the set of functions associated with its vertices of out-degree zero
(outputs).

We are interested in obtaining lower bounds on the size (number of vertices) of
Boolean circuits which compute certain common and important functions. Using
Theorem 1 we can obtain such lower bounds under the assumption that the circuits are
planar. Any circuit can be converted into a planar circuit by the following steps. First,
embed the circuit in the plane, allowing edges to cross if necessary. Next, replace each
pair of crossing edges by the crossover circuit illustrated in Figure 1. It follows that any
lower bound on the size of planar circuits is also a lower bound on the total number of
vertices and edge crossings in any planar representation of a nonplanar circuit. In a
technology for which the total number of vertices and edge crossings is a reasonable
measure of cost, our lower bounds imply that it may be expensive to realize certain
commonly used functions in hardware.

ZA weakly connected component of a directed graph is a connected component of the undirected graph
formed by ignoring edge directions.

620 RICHARD J. LIPTON AND ROBERT ENDRE TARJAN

1

S

O O O O

F1G. 1. Elimination of a crossover by use of three ~exclusive or” gates. Reference [11) contains a crossover
circuit which uses only ~and" and "not”.

A superconcentrator is an acyclic directed graph with m inputs and m outputs such
. thatany setof k inputs and any set of k outputs are joined by k vertex-disjoint paths, for
all k in the range 1=k =m. . " :

THEOREM 6. Any m-inpul, m-output planar superconcentrator contains at least -

m?/72 vertices.

Proof. Let G be an m-input, m-output planar superconcehtrator. Assign to each :

input and output of G acost of 1/(2m), and to every other vertex a cost of zero. Let A,
B, C be a vertex partition satisfying Theorem 1 on G (ignoring edge directions).
Suppose C contains p inputs and outputs. Without loss of generality, suppose that A is
no more costly than B, and that A contains no more outputs than inputs. A contains
between2m/3—pand m — p/2 inputs and outputs. Hence A contains at least m/3—-p/2
inputs and at most m/2—p/4 outputs. B contains at least m—p— (m/2-p/4) =
m/2—3p/4 outputs. Let k =min{[m/3-p/2], {m/2—3p/4]}. Since G 1s a super-
concentrator, any set of k inputs in A and any set of k outputs in B are joined by &
vertex-disjoint paths. Each such path must contain a vertex in C which is neither an
input nor an output. Thus 2vJ2vn—pzmin{m/3 —p/2, m/2— Ip/atz m/3—p, and
nzm?/72. O

The property of being a superconcentrator is a little too strong to be useful in
deriving lower bounds on the complexity of interesting functions, However, there are
weaker properties which still require Q(m?) vertices. Let G =(V, E) be an acyclic
directed graph with m numbered inputs v, U2, " "5 Um and m numbered outputs
Wi, Way ' Wi O is said to have the shifting property if, for any k in the range
1=k =m, any [in the range 0=!=m—k, and any subset of k sources {vi, " s Vi
suchthatiy, iz, k=M= I, there are k vertex-disjoint paths joining the set of inputs
v, v, } with the set of outputs {wis "> Wit}

Tueorem 7. Let G be a planar acyclic directed graph with the shifting property. Then
G contains at least Lm/2J2/162 vertices.

Proof. Suppose that G contains n vertices Assign a cost of 1/m to each of the first
{m/2] inputs and to each of the last |m/2] outputs of G, and a cost of zero to every
other vertex of G. Cail the first | m/2] inputs and the last | m/2] outputs of G costly. Let
A, B, C be a vertex partition satisfying Theorem 1 on G (ignoring edge directions).

Without loss of generality, suppose that A is no more costly than B, and that A
contains no more costly outputs than costly inputs. Let A' be the set of costly inputs in
A, B’ the set of costly outputs in B, p the number of costly inputs and outputs in C,and g
the number of costly inputs and outputs in A. Then 2\m/2]/3-p=q= lm/2] —p/2.
Hence |A'|Zq/22 m/2]/3 - p/2. Also

A Bz IAT- (/2] ~p—(a AT
2q/2 - (Im/2}-p—a/2)

A PLANAR SEPARATOR THEOREM 621

The function x(lm/2]—p—x) for \m/2}/3-p/2=x= |m/2]/2—p/4 is mini-
mized either at x = |m/2]/3—p/2 or at x= lm/21/2—p/4. I x= \m/2}/3-p/2,
we have x(lm/2)—-p—x)=2\m/2)*/9-p \m/2]/2+p*/4. If x=|m/2]/2-p/4
we have x(|m/2) —p—x)=m/2]*/4-p \m/2|/2+3p/16. It follows that {A'} - |B'|z
2{m/2)?/9-plm/2}/2.

Forv; € A', w; € B',and [in the range 1=1=|m/2],call v, w; | a match ifj—i=1
For every v;€ A’ and w; € B’ there is exactly one value of ! which produces a match;
hence the total number of matches for all possible v, w; [is lA'-|B| =
2\m/21%/9—plm/2]/2. Since there are only |m/2} values of I, some value of !/
produces at least 2{m/2}/9 —p/2 matches. Thus, for k =2|m/2]/9—p/2, there is
some value of / and some set of k inputs A"={v;, Viyy " v, }< A’ such that B"=
{Wi st Wiges " " wi 1} < B'. Since G has the shifting property, there must be k vertex-
disjoint paths between A" and B". But each such path must contain a vertex of C which
is neither an input nor an output. Hence Wovn—-p=2\m/2}/9~p/2, and n=
\m/2)%/162. O :

A shifting circuit is a Boolean circuit with m primary inputs X1, X2, * * *» Xms Zeroor | | s

more auxiliary inputs, and m outputs zy, 22," * "> Zms such that, for any k in the range
0= k < m, there is some assignment of the constants 0, 1 to the auxiliary inputs so that
output z;+, computes the identity function x, for 0=i=m —k. The Boolean con-
volution of two Boolean vectors (x1, X2, "> Xm) and (y1, ¥2," "> ym) is the vector
(22, 23,7 "+ » Z2m) given by zk =2i+j=kxiyi'

COROLLARY 2. Any planar shifting circuit has at least |m/2)?/162 vertices.

Proof. Any shifting circuit has the shifting property. See [31], 331 O

COROLLARY 3. Any planar circuit for computing Boolean convolution has at least
| m/2]%/162 vertices.

Proof. A circuit for computing Boolean convolution is a shifting circuitif we regard
X1, -, Xm as the primary inputs and z2, ", Zm+1 @8 the outputs. U

COROLLARY 4. Any planar circuit for computing the product of two m bit binary

. integers has at least |m/2]%/162 vertices.

Proof. A circuit for multiplying two m-bit binary integers is a shifting circuit. 0

The last result of this section is an Q(m*) lower bound on the size of any planar
circuit for multiplying two m x m Boolean matrices. We shall assume that the inputs are
xijp yiy for 1=5,j=m and the outputs are z; for 1=ij=m. The circuit computes
Z=X-Y, where Z=(z;4), X = (x;),and Y = (y;/). We use the following property of
circuits for multiplying Boolean matrices, called the matrix concentration property [31},
[33]. For any k inthe range 1 = k =m? any set {x,, |1 =r=k}of k inputs from X, and
any permutation o of the integers one through m, there exist k vertex-disjoint paths
from {x; ;|1 Sr=k}to {z; wp|1 =r =k}. Similarly, for any kintherangelsk = m?;any
set{y;; |1 =r=k}of k inputs from Y, and any permutation o of one through m, there
exist k vertex-disjoint paths from {y;; |1 =r= kY to {zow |1 Sr=k}.

THEOREM 8. Any planar circuit G for multiplying two m Xm Boolean matrices
contains at least cm® vertices, for some positive constant c.

Proof. This proof is somewhat involved, and we make no attempt to maximize the
constant factor. Suppose G contains n vertices, and that m is even. Assign a cost of
1/(4m2) to each input x;; and each input y;;, a cost of 1/(2m2) to each output z;;, and a
cost of zero to every other vertex. By Theorem 2, there is a partition A, B, C of the
vertices of G such that neither A nor B has total cost exceeding 1 no edge joins a vertex
in A with a vertex in B, and C contains no more than cp/ n vertices. Without loss of
generality, suppose that B contains no fewer outputs than A, and that A contains no
fewer inputs x; than inputs yi. Then B contains at least (m? —¢,¥n)/2 outputs,

622 RICHARD J. LIPTON AND ROBERT ENDRE TARJAN

which contribute at least 1/4—c,\/n/(4m2) to the cost of B. Thus inputs contribute at
most 1/4—c1\/n/(4m2) to the cost of B, and B contains at most mi+civn ihputs. A
contains at_least 2m*— (m2 + cl\/n) — clx/n =m’- 2c1\/n inputs, of which at least
m?/2— ¢,Vn are inputs x;. One of the following cases must hold.

Case 1. A contains at least 3m?/5 inputs x,. Let p be the number of columns of X
which contain at least 4m/7 elements of A. Then pm +(m—pi4m/7) =3m?/S, and
p = m/15. Let q be the number of columns of Z which contain at least 4m/9 elements of
B. Then gm +(m—q)(4m/9 = m?/2 :cw/n/2, and g = m/10—9c1\/n/(10m).

Let kK =min {m/15, m/10—9c1\/n/(10m)}. Choose any k columns of X, each of
which contains at least 4m/7 elements of A. Match each such column of X with a
column of Z which contains at least 4m/9 elements of B. For each pair of matched
columns X, Zxj select asetof 4m/7 + 4m/9—m = m/63 rows [such that x; isin A and
zj;18in B. Such a selection gives a set of km/63 elements in X N A and a set of km/63
elements in Z N B which must be joined by km/63 vertex-disjoint paths, since G has
the matrix concentration propet?y. Eachsguch path must contain a vertex of C. Thus
km/63 < c1vn, which means eith&f m?/(15 - 63)= cn lie., (m?/(15 - 63c))* =n)or
m/63(m/10=9¢,Vn/(10m) S civn (ie., (m2/(9- 71 =n).

Case 2. A contains fewer than 3m?/5 inputs x,. Then A contains at least
2m?/s —2¢;¥ninputs y;. Let S be the set of m/?2 columns of Z which contain the most
elements in B.

Subcase 2a. S contains at least 3m?/10 elements in B. Let p be the number of
columns of X which contain at least 4m/9 elements of A. Then pm +4(m —-pym/9=
m2/2— cl\/n, andpzm/10— 9¢,Vn/(5m). Let q be the number of columns of § which
contain at least 4m/7 elements of B. Then gm +4(m/2—q)m/7 =3m?/10, and q =
m/30. A proof similar to that in Case 1 shows that n = cm” for some positive constant ¢.

Subcase 2b. S contains fewer than 3m__2/10 elements in B. Then the m/2 columns
of Z not in S contain at least m’/5 —¢,Vn/2 elements in B. Let q be the number of
columns of Z not in S which contain at least m/10 elements in B. Then gm +
(m/2—q)(m/10)=m?/5—cVn/2, and q= m/6—5cVn/(9m). 1f 0zZqzm/6—
5¢,vn/(9m), then (3m2/(10c1))2 > n. Hence assume g > 0. Then all columns in S must
contain at least m/10 elements in B, and 2m/3—56p/n/(9m,) columns of Z must
contain at least m/10 elements in B.

Let p be the number of columns of Y whi:h contain at least m/25 elements
of A. Then pm +(m —p)(m/25)22m*/5 —2¢,Wn, and p=3m/8-25¢¥n/(12m).

For any input y; € A and integer / in the range —m +1=l=m—1,call i, L a match
if z;,,, € B. By the previous computations, there are at least 2@/3*5c1\/n/(9rn)+
Im/8— 25¢,¥n/(12m)—m =m/25 ~95¢,Vn/(36m)=m/25~- ¢¥'n/m columns j such
that y,; contains m/25 elements of A and z,; contains m/10 elements of B. Each such
column produces m?/250 matches; thus the total number of matches is at least
m>/6250— mczx/;/ZSO. Since there are only 2m—1 values of /, some value of !
produces at least k = m?/12,500— czx/n/SOO matches. Since G has the matrix concen-
tration property, this set of matches corresponds to a set of k elements inYNAanda
set of k elements in Z N B which must be joined by k vertex-disjoint paths. Each such
path must contain a vertex in C. Thus k= clx/n, which means m“/(12,500(c1 +
¢2/500))* = n.

In all cases n=cm* for some positive constant c. Choosing the minimum ¢
over all cases gives the theorem for even m. The theorem for odd m follows
immediately. O

The bounds in Theorems 6-8 and Corollaries 2-4 are tight to within a constant
factor. We leave the proof of this fact as an exercise.

A PLANAR SEPARATOR THEOREM 623

6. Embedding of data structures. Let G, = (Vy, Ey)and G, =(V,, E;) be undirec-
ted graphs. An embedding of G1in G is a one-to-one map ¢: V- V5. The worst-case
proximity of the embedding is max {d2(&(v), & (w){v, whe Eq}, where datx, v) denotes
the distance between x and y in G.. The average proximity of the embedding is
(1/\E.)/ L {da(d (), &(w)l{v, whe E;}. These notions arise in the following context.
Suppose we wish to represent some kind of data structure by another kind of data
structure, in such a way that if two records are logically adjacent in the first data
structure, their representations are close together in the second. We can model the data
structures by undirected graphs, with vertices denoting records and edges denoting
logical adjacencies. The representation problem is then a graph embedding problem in
which we wish to minimize worst-case or average proximity. See [5], [18], [26] for
research in this area.

THEOREM 9. Any planar graph with maximum degree k can be embedded in a
binary tree so that the average proximity is O(k).

Proof. Let G be an n-vertex graph of maximum degree k. Embed G ina binary tree
T by using the following recursive procedure. If G has one vertex v, let T be the tree of
one vertex, the image of v. Otherwise, apply Corollary 1 to find a partition A, B, C of the
vertices of G. Let v be any vertex in C (if C is empty, let v be a vertex in A). Embed the
subgraph of G induced by AU C —{v} in a binary tree T; by applying the method
recursively. Embed the subgraph of G induced by B ina binary tree T, by applying the
method recursively. Let T consist of a root (the image of v) with two children, the root
of T, and the root of T>. Note that the tree T constructed in this way has exactly n

vertices.
Let h(n) be the maximum depth of a tree T of n vertices produced by this

algorithm. Then -
h(n) <100 - if 1 <100,
h(n)=h(2n/3+2¥2¥n— 1)+ 1=h(290/30)+1 if n = 100.

It follows that h(n) is O(log n).

Let G =(V, E) be an n-vertex graph to which the algorithm is applied, let G, be
the subgraph of G induced by AUC, and let G be the subgraph induced by B.
I s(G)=5{dad(v), d(w)l(v, w)e E}, then s(G)=0 if n=1, and s(GY=
s(Gy)+5(G3) +2k|C|h(n) if n > 1. This follows from the fact that any edge of G notin
G, or G, must be incident to a vertex of C.

If s(n) is the maximum value of s(G) for any n-vertex graph G, then

s(1)=0;
s(m)Emax {s(i)+s(n—i—-1) +ckvn log nin/3 —2V2Vn=i=2n/3+ 2\/5\/;}
if » > 1, for some positive constant ¢.

An inductive proof shows that s(n) is O(kn).

If G is a connected n-vertex graph embedded by the algorithm, then G contains at
least n — 1 edges, and the average proximity is O(k). If G is not connected, embedding
each connected component separately and combining the resulting trees arbitrarily
achieves an O(k) average proximity. [

It is natural to ask whether any graph of bounded degree can be embedded in a
binary tree with O(1) average proximity. (Graphs of unbounded degree cannot be so
embedded; a star consisting of a single vertex adjacent to n — 1 other vertices requires
Q(log n) proximity.) Such is not the case, and in fact the property of being embeddable

624 RICHARD J. LIPTON AND ROBERT ENDRE TARIJAN

in a binary tree with O(1) average proximity is closely related to the property of having a
good separator. To make this statement more precise, let S be a class of graphs. The
class S has an f(n)-separator theorem if there exist constants a <1, 8 >0 such that the
vertices of any n-vertex graph in § can be partitioned into three sets A, B, C such that
|Al, IBl=an, |C| = Bf(n), and no vertex in A is adjacent to any vertex in B.

THEOREM 10. Let S be any class of graphs of maximum degree k closed under the
subgraph relation (i.e., if G1€S and G, is a subgraph of G, then G2€ S). Suppose S
satisfies an n/(log n)2*¢ separator thearem for some fixed . Then any graph in S can be
embedded in a binary tree with O(k) average proximity.

Proof. Similar to the proof of Theorem 9.

TueoreM 11. Let G =(V, E) be any graph of n vertices and m edges which is
embeddable in a binary tree T with average proximity p. Then V can be partitioned into
three sets A, B, C such that |Al, |Bl=2n/3, |C| = cmp/log n for some positive constant ¢,
and no edge joins a vertex in A with a vertex in B. '

Proof. We can assume m =2n/3; otherwise the theorem is immediate. Letvbea
vertex whose removal divides T into two or three connected components, each
containing fewer than 2n/3 vertices. Such a vertex can be found by initializing v t0 be
the root of T and repeating the following step until it is no longer applicable: if some
child w of v has at least 2n/3 descendants, replace v by w. Let A be the set of vertices in
G corresponding to the largest component of T when v is removed, let C be the setof
vertices in V—A adjacent to at least one vertex in A, and let B = v —A - C. By the
choice of v and A, |A|=2n/3 and |B|=2n/3. Let T(A), T(B), T(C) be the sets of
verticesin T corresponding to A, B, C respectively. Since T is a binary tree, the number
of vertices in T(B) U T(C) within a distance of i from at least on€ vertex in T(A) is at
most 2°—1. Thus the average proximity of ‘the embedding of G 1n T is at least
\Cl- |logz|C|}/(2m). This means |Cllog |Cl= O(mp), and |C|= O(mp/log n)- 0

Erdos, Graham, and Szemerédi [7] have shown that for ¢ a large enough constant,
almost all graphs of ¢cn edges cannot be separated into small components without
removing Q(n) vertices. It follows from Theorem 11 that almost all graphs of cn edges
require (log n) average proximity when embedded in binary trees.

7. Maximum matching. Let G =(V,E) be an undirected graph. A matching
M cE is a set of edges no two of which have a common endpoint. A maximum
cardinality matchingis a matching M such that |M| is maximum. If each edge e € E has
an associated real-valued weight w(e), a maximum weight matching is a matching M
such that ¥ ,cm w(e) is maximum. By using Corollary 1, we can find maximum
cardinality matchings in planar graphs in O(n*'?) time and maximum weight matchings
in ()_(n3/ 2logn) time. For arbitrary graphs, the best known algorithms require
O(Vn m loglog n) time to find maximum cardinality matchings [14] and O(mnlogn)
time to find maximum weight matchings [8], where m = |E|. For planar graphs, these
bounds are O(n** log log n) and O(n* log n), respectively.

To describe the method, we need a few ideas from matching theory. If Misa
matching in a graph C, an unmatched vertex is a vertex incident to no edge of M. An
alternating path is a simple path or simple cycle whose edges are alternately in M and
notin M. The net weight of an alternating path is the total weight of its unmatched edges
minus the total weight of its matched edges. An alternating path is au gmenting if its net
weight i§ positive and it is either a cycle or each of its first and last edges is either in Mor
incident to an unmatched vertex. Given an augmenting path, we can increase the weight
of the matching by addingto M all previously unmatched edges on the path and deleting
from M all previously matched edges on the path. Conversely, if there is no augmenting

A PLANAR SEPARATOR THEOREM 625

path, then M is of maximum weight. The next lemma provides a way to update a
maximum weight matching when a single vertex is added to a graph.

LEmMA 2. Let G =(V, E) bean undirected graph with edge weights wie), letv eV,
and let G —v be the subgraph of G induced by the verlex set V—{v}. Suppose M is-a
maximum weight matching in G —v. If G contains no augmenting path (with respect to
M) with v as one endpoint, then M is a maximum weight matching of G. Otherwise,
let P be the edge set of an augmenting path of maximum net weight. Then M@P =
MUP-(MNP)is a maximum weight matching in G.

Proof. Let M, be a maximum weight matching in G. Consider M ®My=
M U M,— (M (N My). Every vertex in G is incident to at most two edges of M U Mo thus
M @M, consists of a set of simple cycles and simple paths in G, each of which is an
alternating path with respect to M,. Any augmenting path in M ® M, must have v as an
endpoint, or else M would not be of maximum weight in G — v. (Note that v is incident
to at most one edge in M ®Mo). Thus M @ M, contains at most one augmenting path,
and such a path has v as one endpoint. The lemma follows. O

Given a suitable representation of a maximum weight matching M in G-v, a
maximum weight matching Mo in G can be found in O(m log n) time by applying
Lemma 2: see [8] for details. Thus applying Lemma 2 to a planar graph requires
O(n logn) time. In the maximum cardinality case, all the weights are one, and
application of Lemma 2 requires O(m) time on an arbitrary graph, O(n) time on a
planar graph [13].

The following recursive algorithm makes use of Corollary 1 and Lemma 2 to find
maximum weight matchings.

Step 1.1f G contains at most one vertex, return the emptysetasa maximum weight
matching.

Step 2. Otherwise, apply Corollary 1 to G. Let A, B, C be the resulting vertex
partition and let Ga, Gg be the subgraphs of G induced by the vertex sets A, B,
respectively. Apply the algorithm recursively to find maximum weight matchings M, in
Ga, Mg in Gp. Let M =M,y UM5, S=AUB.

Step 3. Add C one vertex ata time to S. Each time a vertex is added to S, apply
Lemma 2 to replace M by a maximum weight matching in G, the subgraph of G
induced by the vertex set S. Stop when S =V.

After Step 2, M =M. U Mg is a maximum weight matching of Gaupg. It follows
from Lemma 2 that after Step 3, M is a maximum weight matching of Gv. If t(n) is the
running time of the algorithm on an n-vertex graph, then

tly=cy;
t(n) = max {t(n1)+t(n2)+c2n3/2 lognini+na=n; ny, n,=2n/3}
if n>1,

where ¢, and ¢, are suitable positive constants, since |C| = O n). An inductive proof
shows that t(n)= O(n**logn). In the maximum cardinality case, the algorithm
requires only O(n*'?) time.

8. Remarks. Theorem 1 and its corollaries have applications beyond those in this
paper. For instance, the planar separator theorem can be used to generalize George's
“nested dissection” method [10] for carrying out sparse Gaussian elimination on a
system of linear equations whose sparsity structure corresponds to a square grid. The
generalized method solves any linear system whose sparsity structure corresponds to an
n-vertex planar graph in O(n*'?) time and O(n log n) space [19]. Theorem 2 can be

626 RICHARD J. LIPTON AND ROBERT ENDRE TARJAN

employed to give a rather complicated O(log n) time, O(n)-space solution {21]to the
closest-point searching problem in two dimensions, sometimes called the post office
problem [16]. The previously best solutions to this problem required either O(log n)
time and O(n?) space [29], or O((log n)?) time and O(n) space [6], [29]. Recently
Kirkpatrick [15] has discovered a simple O(log n)-time, O(n)-space solution which
does not use the separator theorem. We leave further applications of the separator
theorem to the reader.

Although most sparse graphs do not have good separators, there are other classes
besides planar graphs and graphs of fixed genus which do (see e.g. {19]). The results
discussed in this paper generalize to any such class. In some of the problems we have
examined, such as graph embedding (§ 6) and sparse Gaussian elimination [19], the
existence of good separators is not only a sufficient but also a necessary condition for
efficient solution of the problem. This phenomenon deserves more study, and suggests
that for certain graph problems it may be valuable to define the concept of ‘“‘usefully
sparse’’ as meaning that a graph has good separators.

Acknowledgment. We would like to thank Hal Gabow for his very perceptive
comments and for suggesting the results in § 7. A preliminary version of this paper was
presented at the Eighteenth Annual Symposium on Foundations of Computer Science,
Providence, Rhode Island, 1977.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT, AND 1. D. ULLMAN, The Design and Analysis of Efficient Computer
Algorithms, Additon-Wesley, Reading, MA., 1974.
[2] M. O. ALBERTSON AND J. P. HUTCHINSON, On the independence ratio of a graph, J. Graph Theory, 2
(1978), pp. 1-8.
{3] U. BERTELE AND F. BRIOSCH], Nonserial Dynamic Programming, Academic Press, New York, 1972.
[4] S. A. COOK, An observation on time-storage tradeoff, Proc. Fifth Annual ACM Symp. on Theory of
Computing (1973), pp. 29-33.
[5] R. A. DEMILLO, S. C. EISENSTAT AND R.]. LIPTON, Preserving average proximity in arrays, Comm.
ACM, 21(1978), pp. 228-230.
[6] D. DoBxIN AND R. J. LIPTON, Multidimensional searching problems, this Journal, 5 (1976), pp-
181-186.
[7] P. ERDOs, R. L. GRAHAM AND E. SZEMEREDI, On sparse graphs with dense long paths, Comp. and
Math. with Appl., 1 (1975), pp. 365-369.
[8] H. GABOW, An efficient implementation of Edmonds’ algorithm for maximum weight matching on
graphs, Technical Report CU-CS-075-75, University of Colorado, Boulder, Colorado (1975).
[9] M. R. GAREY, D. S. JOHNSON, F. P. PREPARATA, AND R. E. TARJAN, Triangulating a simple
polygon, Informat. Processing, Letters, 7 (1978), pp. 175-179.
[10] J. A. GEORGE, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10 (1973), pp.
345-363.
[11] L. GOLDSCHLAGER, The monotone and planar circuit value problems are log space complete for P, ACM
SIGACT News 9, 2 (1977), pp. 25-29.
[12] J. HOPCcROFT, W. PAUL AND L. VALIANT, On time versus space, J. Assoc. Comput. Mach,, 24 (1977,
pp. 332-337.
[13] T. KAMEDA AND 1. MUNRO, A O(VE) algorithm for maximum matching of graphs, Computing 12
(1974), pp. 91-98.
{14] O.KARIV, An O(n*®) algorithm for finding a maximum matching on a general graph, Ph.D dissertation,
Weizmann Institute of Science, Rehovot, Israel, 1976.
{15] D. KIRKPATRICK, private communication, 1979.
[16] D. E. KNUTH, The Art of Computer Programming, Volume 3: Sorting and Searching, Addison-Wesley,
Reading, MA., 1973.
[17] D. KOZEN, On parallelism in Turing machines, Proc. Seventeenth Annual Symp. on Foundations of
Computer Science, 1976, pp. 89-97.

A PLANAR SEPARATOR THEOREM 627

(18] R.J. LipTON, S. C. EISENSTAT, AND R. A. DEMILLO, Space and time hierarchies for control structures
and data structures, J. Assoc. Comput. Mach., 23 {1976), pp. 720-732.

[19] R.J. LIPTON, D.J. ROSE, AND R. E. TARJAN, Generalized nested dissection, STAM 1. Numer. Anal.,
16 (1979), pp. 346-358.

[20] R. J. LIPTON anD R. E. TARJAN, A separator theorem for planar graphs, SIAM 1. Appl. Math,,
36(1979), pp. 177-189.

, Applications of a planar separator theorem, Proc. 18th Annual Symp. on Eoundations of
Computer Science (1977), pp- 162-170.

[22] H.C. MARTIN AND G. F. CAREY, Introduction to Finite Element Analysis, McGraw-Hill, New York,
1973. :

[23] M. S. PATERSON AND C. E. HEWITT, Comparalive schematology, Record of Project MAC Conf. on
Concurrent Systems and Parallel Computation (1970), pp- 119-128.

(24] M. S. Paterson, Tape bounds for time-bounded Turing machines, J. Comput. System Sci., 6 (1972), pp.
116-124.

(25] W.J. PAauUL, R. E. TARJIAN, AND J. R. CELONTI, Space bounds for a game on graphs, Math. Systems
Theory 10 (1977), pp- 239-251.

{26] A. L. ROSENBERG, Managing storage for extendible arrays, this Journal, 4 (1975), pp- 287-306.

[27] A. ROSENTHAL, Nonserial dynamic programming is optimal, Proc. Ninth Annual ACM Symp. on
Theory of Computing (1977), pp. 98-105.

28] R. SETHIL, Complete register allocation problems, this Journal, 4 (1975), pp- 226-248.

{29] M. J. SHAMOS, Geometric complexity, Proc. Seventh Annual ACM Symp. on Theory of Computing
(1975), pp- 224-233.

[30] N. SIDER, Partial colorings and limiting chromatic numbers, Ph.D. dissertation, Syracuse University,
Syracuse, NY (1971).

[31] L. G. VALIANT, On non-linear lower bounds in computational complexity, Proc. Seventh Annual ACM
Symp. on Theory of Computing (1975), pp- 45-53.

[32] P. UNGAR, A theorem on planar graphs, J. London Math. Soc., 26 (1951}, pp- 256-262.

[33] L. G. VALIANT, Graph-theoretic arguments in low-level complexity, Computer Science Dept., Uni-
versity of Edinburgh, 1977.

211

