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Abstract
Recent developments in techniques for modeling, digitiz-

ing and visualizing 3D shapes has led to an explosion in
the number of available 3D models on the Internet and in
domain-specific databases. This has led to the development
of 3D shape retrieval systems that, given a query object,
retrieve similar 3D objects. For visualization, 3D shapes
are often represented as a surface, in particular polygo-
nal meshes, for example in VRML format. Often these mod-
els contain holes, intersecting polygons, are not manifold,
and do not enclose a volume unambiguously. On the con-
trary, 3D volume models, such as solid models produced
by CAD systems, or voxels models, enclose a volume prop-
erly. This paper surveys the literature on methods for con-
tent based 3D retrieval, taking into account the applicabil-
ity to surface models as well as to volume models. The meth-
ods are evaluated with respect to several requirements of
content based 3D shape retrieval, such as: (1) shape repre-
sentation requirements, (2) properties of dissimilarity mea-
sures, (3) efficiency, (4) discrimination abilities, (5) ability
to perform partial matching, (6) robustness, and (7) neces-
sity of pose normalization. Finally, the advantages and lim-
its of the several approaches in content based 3D shape re-
trieval are discussed.

1. Introduction
The advancement of modeling, digitizing and visualizing

techniques for 3D shapes has led to an increasing amount
of 3D models, both on the Internet and in domain-specific
databases. This has led to the development of the first exper-
imental search engines for 3D shapes, such as the 3D model
search engine at Princeton university [2, 57], the 3D model
retrieval system at the National Taiwan University [1, 17],
the Ogden IV system at the National Institute of Multimedia
Education, Japan [62, 77], the 3D retrieval engine at Utrecht
University [4, 78], and the 3D model similarity search en-
gine at the University of Konstanz [3, 84].

Laser scanning has been applied to obtain archives
recording cultural heritage like the Digital Michelan-
gelo Project [25, 48], and the Stanford Digital Formae
Urbis Romae Project [75]. Furthermore, archives contain-
ing domain-specific shape models are now accessible by

the Internet. Examples are the National Design Repos-
itory, an online repository of CAD models [59, 68],
and the Protein Data Bank, an online archive of struc-
tural data of biological macromolecules [10, 80].

Unlike text documents, 3D models are not easily re-
trieved. Attempting to find a 3D model using textual an-
notation and a conventional text-based search engine would
not work in many cases. The annotations added by human
beings depend on language, culture, age, sex, and other fac-
tors. They may be too limited or ambiguous. In contrast,
content based 3D shape retrieval methods, that use shape
properties of the 3D models to search for similar models,
work better than text based methods [58].

Matching is the process of determining how similar two
shapes are. This is often done by computing a distance. A
complementary process is indexing. In this paper, indexing
is understood as the process of building a datastructure to
speed up the search. Note that the term indexing is also of-
ten used for the identification of features in models, or mul-
timedia documents in general. Retrieval is the process of
searching and delivering the query results. Matching and in-
dexing are often part of the retrieval process.

Recently, a lot of researchers have investigated the spe-
cific problem of content based 3D shape retrieval. Also, an
extensive amount of literature can be found in the related
fields of computer vision, object recognition and geomet-
ric modelling. Survey papers to this literature have been
provided by Besl and Jain [11], Loncaric [50] and Camp-
bell and Flynn [16]. For an overview of 2D shape match-
ing methods we refer the reader to the paper by Veltkamp
[82]. Unfortunately, most 2D methods do not generalize di-
rectly to 3D model matching. Work in progress by Iyer et
al. [40] provides an extensive overview of 3D shape search-
ing techniques. Atmosukarto and Naval [6] describe a num-
ber of 3D model retrieval systems and methods, but do not
provide a categorization and evaluation.

In contrast, this paper evaluates 3D shape retrieval meth-
ods with respect to several requirements on content based
3D shape retrieval, such as: (1) shape representation re-
quirements, (2) properties of dissimilarity measures, (3)ef-
ficiency, (4) discrimination abilities, (5) ability to perform
partial matching, (6) robustness, and (7) necessity of pose
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Figure 1. Conceptual framework for shape retrieval.

normalization. In section 2 we discuss several aspects of 3D
shape retrieval. The literature on 3D shape matching meth-
ods is discussed in section 3 and evaluated in section 4.

2. 3D shape retrieval aspects
In this section we discuss several issues related to 3D

shape retrieval.

2.1. 3D shape retrieval framework
At a conceptual level, a typical 3D shape retrieval frame-

work as illustrated by fig. 1 consists of a database with an
index structure createdoffline and anonlinequery engine.
Each 3D model has to be identified with a shape descrip-
tor, providing a compact overall description of the shape.
To efficiently search a large collection online, an indexing
data structure and searching algorithm should be available.
Theonlinequery engine computes the query descriptor, and
models similar to the query model are retrieved by match-
ing descriptors to the query descriptor from the index struc-
ture of the database. The similarity between two descriptors
is quantified by a dissimilarity measure. Three approaches
can be distinguished to provide a query object: (1) browsing
to select a new query object from the obtained results, (2)
a direct query by providing a query descriptor, (3) query by
example by providing an existing 3D model or by creating
a 3D shape query from scratch using a 3D tool or sketch-
ing 2D projections of the 3D model. Finally, the retrieved
models can be visualized.

2.2. Shape representations
An important issue is the type of shape representation(s)

that a shape retrieval system accepts. Most of the 3D models
found on the World Wide Web are meshes defined in a file
format supporting visual appearance. Currently, the most
common format used for this purpose is the Virtual Real-
ity Modeling Language (VRML) format. Since these mod-
els have been designed for visualization, they often contain

only geometry and appearance attributes. In particular, they
are represented by “polygon soups”, consisting of unorga-
nized sets of polygons. Also, in general these models are
not “watertight” meshes, i.e. they do not enclose a volume.
By contrast, for volume models retrieval methods depend-
ing on a properly defined volume can be applied.

2.3. Measuring similarity
In order to measure how similar two objects are, it is nec-

essary to compute distances between pairs of descriptors us-
ing a dissimilarity measure. Although the term similarity is
often used, dissimilarity corresponds to the notion of dis-
tance: small distances means small dissimilarity, and large
similarity.

A dissimilarity measure can be formalized by a func-
tion defined on pairs of descriptors indicating the degree
of their resemblance. Formally speaking, a dissimilarity
measured on a setS is a non-negative valued function
d : S × S → R

+ ∪ {0}. Functiond may have some of
the following properties:

i. Identity: For allx ∈ S, d(x, x) = 0.
ii. Positivity: For allx 6= y in S, d(x, y) > 0.

iii. Symmetry: For allx, y ∈ S, d(x, y) = d(y, x).
iv. Triangle inequality:

For allx, y, z ∈ S, d(x, z) ≤ d(x, y) + d(y, z).
v. Transformation invariance: For a chosen transforma-

tion groupG, for all x, y ∈ S, g ∈ G, d(g(x), g(y)) =
d(x, y).

The identity property says that a shape is completely
similar to itself, while the positivity property claims that dif-
ferent shapes are never completely similar. This property is
very strong for a high-level shape descriptor, and is often
not satisfied. However, this is not a severe drawback, if the
loss of uniqueness depends on negligible details.

Symmetry is not always wanted. Indeed, human percep-
tion does not always find that shapex is equally similar to
shapey, asy is to x. In particular, a variantx of prototype
y, is often found more similar toy then vice versa [81].

Dissimilarity measures for partial matching, giving a
small distanced(x, y) if a part of x matches a part ofy,
do not obey the triangle inequality.

Transformation invariance has to be satisfied, if the com-
parison and the extraction process of shape descriptors have
to be independent of the place, orientation and scale of the
object in its Cartesian coordinate system. If we want that
a dissimilarity measure is not affected by any transforma-
tion on x, then we may use as alternative formulation for
(v): Transformation invariance: For a chosen transforma-
tion groupG, for all x, y ∈ S, g ∈ G, d(g(x), y) = d(x, y).

When all the properties (i)-(iv) hold, the dissimilarity
measure is called ametric. Other combinations are possi-
ble: a pseudo-metric is a dissimilarity measure that obeys
(i), (iii) and (iv) while a semi-metric obeys only (i), (ii) and



(iii). If a dissimilarity measure is a pseudo-metric, the tri-
angle inequality can be applied to make retrieval more effi-
cient [7, 83].

2.4. Efficiency
For large shape collections, it is inefficient to sequen-

tially match all objects in the database with the query object.
Because retrieval should be fast, efficient indexing search
structures are needed to support efficient retrieval. Sincefor
query by example the shape descriptor is computed online,
it is reasonable to require that the shape descriptor compu-
tation is fast enough for interactive querying.

2.5. Discriminative power
A shape descriptor should capture properties that dis-

criminate objects well. However, the judgement of the sim-
ilarity of the shapes of two 3D objects is somewhat sub-
jective, depending on the user preference or the application
at hand. E.g. for solid modeling applications often topol-
ogy properties such as the numbers of holes in a model are
more important than minor differences in shapes. On the
contrary, if a user searches for models looking visually sim-
ilar the existence of a small hole in the model, may be of no
importance to the user.

2.6. Partial matching
In contrast to global shape matching, partial matching

finds a shape of which a part is similar to a part of another
shape. Partial matching can be applied if 3D shape mod-
els are not complete, e.g. for objects obtained by laser scan-
ning from one or two directions only. Another application
is the search for “3D scenes” containing an instance of the
query object. Also, this feature can potentially give the user
flexibility towards the matching problem, if parts of inter-
est of an object can be selected or weighted by the user.

2.7. Robustness
It is often desirable that a shape descriptor is insensitive

to noise and small extra features, and robust against arbi-
trary topological degeneracies, e.g. if it is obtained by laser
scanning. Also, if a model is given in multiple levels-of-
detail, representations of different levels should not differ
significantly from the original model.

2.8. Pose normalization
In the absence of prior knowledge, 3D models have ar-

bitrary scale, orientation and position in the 3D space. Be-
cause not all dissimilarity measures are invariant under ro-
tation and translation, it may be necessary to place the 3D
models into a canonical coordinate system. This should be
the same for a translated, rotated or scaled copy of the
model.

A natural choice is to first translate the center to the ori-
gin. For volume models it is natural to translate the cen-
ter of mass to the origin. But for meshes this is in gen-

Figure 2. Similar mugs oriented by principal axes in dif-

ferent ways [30].

eral not possible, because they have not to enclose a vol-
ume. For meshes it is an alternative to translate the cen-
ter of mass of all the faces to the origin. For example
the Principal Component Analysis (PCA) method computes
for each model the principal axes of inertiae1, e2 ande3

and their eigenvaluesλ1, λ2 and λ3, and make the nec-
essary conditions to get right-handed coordinate systems.
These principal axes define an orthogonal coordinate sys-
tem (e1, e2, e3), with λ1 ≥ λ2 ≥ λ3. Next, the polyhe-
dral model is rotated around the origin such that the co-
ordinate system(ex, ey, ez) coincides with the coordinate
system(e1, e2, e3).

The PCA algorithm for pose estimation is fairly simple
and efficient. However, if the eigenvalues are equal, prin-
cipal axes may switch, without affecting the eigenvalues.
Similar eigenvalues may imply an almost symmetrical mass
distribution around an axis (e.g. nearly cylindrical shapes)
or around the center of mass (e.g. nearly spherical shapes).
Fig. 2 illustrates the problem.

3. Shape matching methods
In this section we discuss 3D shape matching methods.

We divide shape matching methods in three broad cate-
gories: (1) feature based methods, (2) graph based meth-
ods and (3) other methods. Fig. 3 illustrates a more detailed
categorization of shape matching methods. Note, that the
classes of these methods are not completely disjoined. For
instance, a graph-based shape descriptor, in some way, de-
scribes also the global feature distribution. By this pointof
view the taxonomy should be a graph.

3.1. Feature based methods
In the context of 3D shape matching, features denote ge-

ometric and topological properties of 3D shapes. So 3D
shapes can be discriminated by measuring and comparing
their features. Feature based methods can be divided into
four categories according to the type of shape features used:
(1) global features, (2) global feature distributions, (3)spa-
tial maps, and (4) local features. Feature based methods
from the first three categories represent features of a shape
using a single descriptor consisting of ad-dimensional vec-
tor of values, where the dimensiond is fixed for all shapes.
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Figure 3. Taxonomy of shape matching methods.

The value ofd can easily be a few hundred. The descriptor
of a shape is a point in a high dimensional space, and two
shapes are considered to be similar if they are close in this
space. Retrieving thek best matches for a 3D query model is
equivalent to solving thek nearest neighbors problem. Us-
ing the Euclidean distance, matching feature descriptors can
be done efficiently in practice by searching in multiple 1D
spaces to solve the approximatek nearest neighbor prob-
lem as shown by Indyk and Motwani [36]. In contrast with
the feature based methods from the first three categories, lo-
cal feature based methods describe for a number of surface
points the 3D shape around the point. For this purpose, for
each surface point a descriptor is used instead of a single de-
scriptor.

3.1.1. Global feature based similarity

Global features characterize the global shape of a 3D model.
Examples of these features are the statistical moments of the
boundary or the volume of the model, volume-to-surface ra-
tio, or the Fourier transform of the volume or the boundary
of the shape.

Zhang and Chen [88] describe methods to com-
pute global features such as volume, area, statistical mo-
ments, and Fourier transform coefficients efficiently.

Paquet et al. [67] apply bounding boxes, cords-based,
moments-based and wavelets-based descriptors for 3D
shape matching.

Corney et al. [21] introduce convex-hull based indices
like hull crumpliness (the ratio of the object surface area
and the surface area of its convex hull), hull packing (the
percentage of the convex hull volume not occupied by the
object), and hull compactness (the ratio of the cubed sur-
face area of the hull and the squared volume of the convex
hull).

Kazhdan et al. [42] describe a reflective symmetry de-
scriptor as a 2D function associating a measure of reflec-
tive symmetry to every plane (specified by 2 parameters)
through the model’s centroid. Every function value provides
a measure of global shape, where peaks correspond to the
planes near reflective symmetry, and valleys correspond to
the planes of near anti-symmetry. Their experimental results
show that the combination of the reflective symmetry de-
scriptor with existing methods provides better results.

Since only global features are used to characterize the
overall shape of the objects, these methods are not very dis-
criminative about object details, but their implementation is
straightforward. Therefore, these methods can be used as an
active filter, after which more detailed comparisons can be
made, or they can be used in combination with other meth-
ods to improve results.

Global feature methods are able to support user feed-
back as illustrated by the following research. Zhang and
Chen [89] applied features such as volume-surface ratio,
moment invariants and Fourier transform coefficients for
3D shape retrieval. They improve the retrieval performance
by an active learning phase in which a human annotator as-
signs attributes such as airplane, car, body, and so on to a
number of sample models. Elad et al. [28] use a moments-
based classifier and a weighted Euclidean distance measure.
Their method supports iterative and interactive database
searching where the user can improve the weights of the
distance measure by marking relevant search results.

3.1.2. Global feature distribution based similarity

The concept of global feature based similarity has been re-
fined recently by comparing distributions of global features
instead of the global features directly.

Osada et al. [66] introduce and compare shape distribu-
tions, which measure properties based on distance, angle,
area and volume measurements between random surface
points. They evaluate the similarity between the objects us-
ing a pseudo-metric that measures distances between distri-
butions. In their experiments the D2 shape distribution mea-
suring distances between random surface points is most ef-
fective.

Ohbuchi et al. [64] investigate shape histograms that are
discretely parameterized along the principal axes of inertia
of the model. The shape descriptor consists of three shape
histograms: (1) the moment of inertia about the axis, (2)
the average distance from the surface to the axis, and (3)
the variance of the distance from the surface to the axis.
Their experiments show that the axis-parameterized shape
features work only well for shapes having some form of ro-
tational symmetry.

Ip et al. [37] investigate the application of shape distri-
butions in the context of CAD and solid modeling. They re-
fined Osada’s D2 shape distribution function by classifying



2 random points as 1) IN distances if the line segment con-
necting the points lies complete inside the model, 2) OUT
distances if the line segment connecting the points lies com-
plete outside the model, 3) MIXED distances if the line seg-
ment connecting the points lies passes both inside and out-
side the model. Their dissimilarity measure is a weighted
distance measure comparing D2, IN, OUT and MIXED dis-
tributions. Since their method requires that a line segment
can be classified as lying inside or outside the model it is
required that the model defines a volume properly. There-
fore it can be applied to volume models, but not to polyg-
onal soups. Recently, Ip et al. [38] extend this approach
with a technique to automatically categorize a large model
database, given a categorization on a number of training ex-
amples from the database.

Ohbuchi et al. [63], investigate another extension of the
D2 shape distribution function, called the Absolute Angle-
Distance histogram, parameterized by a parameter denot-
ing the distance between two random points and by a pa-
rameter denoting the angle between the surfaces on which
two random points are located. The latter parameter is ac-
tually computed as an inner product of the surface normal
vectors. In their evaluation experiment this shape distribu-
tion function outperformed the D2 distribution function at
about 1.5 times higher computational costs. Ohbuchi et al.
[65] improved this method further by a multi-resolution ap-
proach computing a number of alpha-shapes at different
scales, and computing for each alpha-shape their Absolute
Angle-Distance descriptor. Their experimental results show
that this approach outperforms the Angle-Distance descrip-
tor at the cost of high processing time needed to compute
the alpha-shapes.

Shape distributions distinguish models in broad cate-
gories very well: aircraft, boats, people, animals, etc. How-
ever, they perform often poorly when having to discrimi-
nate between shapes that have similar gross shape proper-
ties but vastly different detailed shape properties.

3.1.3. Spatial map based similarity

Spatial maps are representations that capture the spatial lo-
cation of an object. The map entries correspond to physi-
cal locations or sections of the object, and are arranged in a
manner that preserves the relative positions of the features
in an object. Spatial maps are in general not invariant to ro-
tations, except for specially designed maps. Therefore, typ-
ically a pose normalization is done first.

Ankerst et al. [5] use shape histograms as a means of an-
alyzing the similarity of 3D molecular surfaces. The his-
tograms are not built from volume elements but from uni-
formly distributed surface points taken from the molecular
surfaces. The shape histograms are defined on concentric
shells and sectors around a model’s centroid and compare
shapes using a quadratic form distance measure to compare

the histograms taking into account the distances between
the shape histogram bins.

Vranić et al. [85] describe a surface by associating to
each ray from the origin, the value equal to the distance to
the last point of intersection of the model with the ray and
compute spherical harmonics for this spherical extent func-
tion. Spherical harmonics form a Fourier basis on a sphere
much like the familiar sine and cosine do on a line or a cir-
cle. Their method requires pose normalization to provide
rotational invariance. Also, Yu et al. [86] propose a descrip-
tor similar to a spherical extent function and a descriptor
counting the number of intersections of a ray from the ori-
gin with the model. In both cases the dissimilarity between
two shapes is computed by the Euclidean distance of the
Fourier transforms of the descriptors of the shapes. Their
method requires pose normalization to provide rotational in-
variance.

Kazhdan et al. [43] present a general approach based on
spherical harmonics to transform rotation dependent shape
descriptors into rotation independent ones. Their method is
applicable to a shape descriptor which is defined as either a
collection of spherical functions or as a function on a voxel
grid. In the latter case a collection of spherical functionsis
obtained from the function on the voxel grid by restricting
the grid to concentric spheres. From the collection of spher-
ical functions they compute a rotation invariant descriptor
by (1) decomposing the function into its spherical harmon-
ics, (2) summing the harmonics within each frequency, and
computing theL2-norm for each frequency component. The
resulting shape descriptor is a 2D histogram indexed by ra-
dius and frequency, which is invariant to rotations about the
center of the mass. This approach offers an alternative for
pose normalization, because their method obtains rotation
invariant shape descriptors. Their experimental results show
indeed that in general the performance of the obtained ro-
tation independent shape descriptors is better than the cor-
responding normalized descriptors. Their experiments in-
clude the ray-based spherical harmonic descriptor proposed
by Vranić et al. [85]. Finally, note that their approach gen-
eralizes the method to compute voxel-based spherical har-
monics shape descriptor, described by Funkhouser et al.
[30], which is defined as a binary function on the voxel grid,
where the value at each voxel is given by the negatively ex-
ponentiated Euclidean Distance Transform of the surface of
a 3D model.

Novotni and Klein [61] present a method to compute
3D Zernike descriptors from voxelized models as natural
extensions of spherical harmonics based descriptors. 3D
Zernike descriptors capture object coherence in the radial
direction as well as in the direction along a sphere. Both
3D Zernike descriptors and spherical harmonics based de-
scriptors achieve rotation invariance. However, by sampling
the space only in radial direction the latter descriptors do



Figure 4. Spherical harmonics do not distinguish mod-

els that differ by a rotation to the interior part [43].

not capture object coherence in the radial direction, as illus-
trated by fig. 4.

The limited experiments comparing spherical harmonics
and 3D Zernike moments performed by Novotni and Klein
show similar results for a class of planes, but better results
for the 3D Zernike descriptor for a class of chairs.

Vranić [84] expects that voxelization is not a good idea,
because many fine details are lost in the voxel grid. There-
fore, he compares his ray-based spherical harmonic method
[85] and a variation of it using functions defined on concen-
tric shells with the voxel-based spherical harmonics shape
descriptor proposed by Funkhouser et al. [30]. Also, Vrani´c
et al. [85] accomplish pose normalization using the so-
called continuous PCA algorithm. In the paper it is claimed
that the continuous PCA is better as the conventional PCA
and better as the weighted PCA, which takes into account
the differing sizes of the triangles of a mesh. In contrast
with Kazhdan’s experiments [43] the experiments by Vranić
show that for ray-based spherical harmonics using the con-
tinuous PCA without voxelization is better than using rota-
tion invariant shape descriptors obtained using voxelization.
Perhaps, these results are opposite to Kazhdan results, be-
cause of the use of different methods to compute the PCA
or the use of different databases or both.

Kriegel et al. [46, 47] investigate similarity for voxelized
models. They obtain a spatial map by partitioning a voxel
grid into disjoint cells which correspond to the histograms
bins. They investigate three different spatial features asso-
ciated with the grid cells: (1) volume features recording
the fraction of voxels from the volume in each cell, (2)
solid-angle features measuring the convexity of the volume
boundary in each cell, (3) eigenvalue features estimating the
eigenvalues obtained by the PCA applied to the voxels of
the model in each cell [47], and a fourth method, using in-
stead of grid cells, a more flexible partition of the voxels
by cover sequence features, which approximate the model
by unions and differences of cuboids, each containing a
number of voxels [46]. Their experimental results show that

the eigenvalue method and the cover sequence method out-
perform the volume and solid-angle feature method. Their
method requires pose normalization to provide rotational in-
variance. Instead of representing a cover sequence with a
single feature vector, Kriegel et al. [46] represent a cover
sequence by a set of feature vectors. This approach allows
an efficient comparison of two cover sequences, by compar-
ing the two sets of feature vectors using a minimal match-
ing distance.

The spatial map based approaches show good retrieval
results. But a drawback of these methods is that partial
matching is not supported, because they do not encode the
relation between the features and parts of an object. Fur-
ther, these methods provide no feedback to the user about
why shapes match.

3.1.4. Local feature based similarity

Local feature based methods provide various approaches to
take into account the surface shape in the neighbourhood of
points on the boundary of the shape.

Shum et al. [74] use a spherical coordinate system to
map the surface curvature of 3D objects to the unit sphere.
By searching over a spherical rotation space a distance be-
tween two curvature distributions is computed and used as
a measure for the similarity of two objects. Unfortunately,
the method is limited to objects which contain no holes,
i.e. have genus zero. Zaharia and Prêteux [87] describe the
3D Shape Spectrum Descriptor, which is defined as the
histogram of shape index values, calculated over an en-
tire mesh. The shape index, first introduced by Koenderink
[44], is defined as a function of the two principal curvatures
on continuous surfaces. They present a method to compute
these shape indices for meshes, by fitting a quadric surface
through the centroids of the faces of a mesh. Unfortunately,
their method requires a non-trivial preprocessing phase for
meshes that are not topologically correct or not orientable.

Chua and Jarvis [18] compute point signatures that accu-
mulate surface information along a 3D curve in the neigh-
bourhood of a point. Johnson and Herbert [41] apply spin
images that are 2D histograms of the surface locations
around a point. They apply spin images to recognize models
in a cluttered 3D scene. Due to the complexity of their rep-
resentation [18, 41] these methods are very difficult to ap-
ply to 3D shape matching. Also, it is not clear how to define
a dissimilarity function that satisfies the triangle inequality.

Körtgen et al. [45] apply 3D shape contexts for 3D shape
retrieval and matching. 3D shape contexts are semi-local
descriptions of object shape centered at points on the sur-
face of the object, and are a natural extension of 2D shape
contexts introduced by Belongie et al. [9] for recognition
in 2D images. The shape context of a pointp, is defined
as a coarse histogram of the relative coordinates of the re-
maining surface points. The bins of the histogram are de-



fined by the overlay of concentric shells around the cen-
troid of the model and sectors emerging from the centroid.
Matching consists of a local matching stage and a global
matching stage. In the local matching stage, for pointsp
the best matching pointq is found on the other shape. In
the global matching stage, correspondences between simi-
lar sample points on the two shapes are found.

Compared to the methods presented in the previous sec-
tions of this paper, matching 3D shape contexts is less effi-
cient, efficient indexing is not straightforward, and the ob-
tained dissimilarity measure does not obey the triangle in-
equality.

3.2. Graph based methods

In general, the feature based methods discussed in the
previous section take into account only the pure geometry
of the shape. In contrast, graph based methods attempt to
extract a geometric meaning from a 3D shape using a graph
showing how shape components are linked together. Graph
based methods can be divided into three broad categories
according to the type of graph used: (1) model graphs, (2)
Reeb graphs, and (3) skeletons. For an extensive discussion
of Reeb graphs and skeletons we refer the reader to the pa-
per of Biasotti et al. [14].

Efficient computation of existing graph metrics for gen-
eral graphs is not possible: computing the edit distance
is NP-hard [90] and computing the maximal common
subgraph [32] is even NP-complete. Polynomial solu-
tions can be obtained for directed acyclic graphs such
as shock graphs. Sebastian et al. [70] describe an ap-
proach to compute a pseudo-metric between shock graphs.
It is obtained by exhaustively searching for the optimal de-
formation path between two 2D shapes, and using the cost
of this path as a distance between two shapes. But the com-
putation time of this method is too high for practical ap-
plication, and it is not straightforwardly generalized to
3D.

3.2.1. Model graph based similarity

Model graph based similarity methods are applicable to
3D solid models as produced by CAD most systems. The
most dominant solid modeling representation methods are
Boundary Representation (B-rep) and Constructive Solid
Geometry (CSG). A B-rep describes a model in terms of
its vertices, edges and faces. By contrast to the facets in
meshes, the faces of a B-rep may be represented as free-
form surfaces. CSG describes the part in terms of a set of
Boolean operations applied to primitive geometric entities
such as cubes and cylinders. For an introduction to solid
modeling representations we refer the reader to the book by
Hoffmann [35]. For content based retrieval of solid models,
researchers have investigated the application of graph-based
datastructures storing engineering features (machining fea-

tures, form features, etc.). Elinson et al. [29], and Cicirello
and Regli [19] investigate the application of model depen-
dency graphs storing machining features. These approaches
compare the similarity of solid models by comparing their
associated manufacturing plans.

McWerther et al. [53, 54, 55], and El-Mehalawi and
Miller [26, 27] apply model signature graphs, that both
model the topology of a shape model by a graph struc-
ture, and map a number of engineering features to a high-
dimensional feature vector. Model signature graphs repre-
sent the faces from the B-Rep data structure of the solid
model as nodes and the boundary curves between the faces
as edges. This approach allows comparison of shape mod-
els by comparing their topology using graphs and compar-
ing their other properties using feature vectors in the same
way as feature based methods. Therefore, McWerther et al.
[53, 54, 55] apply approximate graph comparison using the
spectrum of the graph. The graph spectrum, which consists
of the sorted eigenvalues of the adjacency matrix of the
graph, is strongly related to the structure of the graph, and
hence to the topology of the shape model. El-Mehalawi and
Miller [26, 27] apply approximate graph comparison based
on local clique matching.

The model graph based approaches are especially rel-
evant for the CAD/CAM community, but are difficult to
apply for models of natural shapes like humans and ani-
mals. To the best of our knowledge only Zuckerberger et al.
[91], applied an approach similar to model graphs to con-
tent based retrieval suitable for natural shapes. They decom-
pose the surface of a model into patches classified as similar
to a sphere, a cylinder, a cone or a plane, and identify adja-
cent patches to build a graph representation of the model.

3.2.2. Skeleton based similarity

Sundar et al. [76] use as a shape descriptor a skeletal graph
that encodes geometric and topological information. After
voxelization of a shape, the skeletal points are obtained by
a distance transform-based thinning algorithm developed by
Gagvani [31] using a thinness parameter. The skeletal points
are connected in an undirected acyclic shape graph by ap-
plying the Minimum Spanning Tree algorithm. Decreasing
the thinness results in denser skeletal graphs. So, by using
different values of the thinness parameter they obtain a hi-
erarchical graph structure. Each node in the graph repre-
sents a segment of the original skeleton. With each node a
geometrical signature vector is associated encoding the ra-
dial distribution about the segment. Also, with each node
of the graph a topological signature vector is associated en-
coding the topology of the subtrees rooted at the node. This
topological signature vector is defined recursively over the
subgraphs of the node using eigenvalues of their adjacency
matrices. Sundar et al. [76] match two shapes by approxi-
mate comparison of their hierarchical skeletal graphs using



Figure 5. Skeletal graph matching with colors showing

the node-to-node correspondence based upon the topol-

ogy and radial distance about the edge [76].

a greedy algorithm finding the maximum cardinality, mini-
mum weight matching in a bipartite graph. Efficient index-
ing of a skeletal graph is supported by storing for each node
its topological signature vector. Since a topological signa-
ture vector has a fixed size, the size of its shape descrip-
tor is a constant multiplied by the number of nodes of the
skeleton. Fig. 5 illustrates their shape matching approach.
Their method also supports matching of articulated objects,
by taking into account only the topological signature vec-
tor as a descriptor, and partial matching, where a skeletal
graph is allowed to match with a subgraph of another skele-
tal graph.

Iyer et al. [39, 51] use both global features and skele-
tal graphs to describe volume models, obtained by voxeliz-
ing solid models. They obtain a skeletal graph by a thinning
algorithm iteratively eroding voxels until a one-voxel width
skeleton is left. They match two shapes by an algorithm de-
tecting graph/subgraph isomorphism using a decision-tree
based approach developed by Messmer and Bunke [56].
Their algorithm indexes all the graphs in a database in the
form of a decision tree using the various permutations of
the adjacency matrix. Hence, this algorithm obtains a search
time polynomial in the number of graph nodes, at the cost of
exponential space requirements. Their results show the fea-
sibility of their approach for relatively small volume mod-
els.

3.2.3. Reeb graph based similarity

Mathematically, the Reeb graph is defined as the quotient
space of a shapeS and a quotient functionf . Biasotti et al.

[15] compare Reeb graphs obtained by using different quo-
tient functionsf and highlight how the choice off deter-
mines the final matching result. For instance, the integral
geodetic distance as quotient function is especially suited
for articulated objects, while the distance to the barycen-
ter should be preferred if the aim is to distinguish differ-
ent poses of an articulated object. Hilaga et al. [34] describe
a topological matching method relevant especially for artic-
ulated objects. Their method uses Reeb graphs based on a
quotient function defined by an integral geodesic distance.
Bespalov et al. [12] investigate the application of Hilaga’s
method to solid models. They found that for solid mod-
els, minor changes in topology may result in significant
differences in similarity. Since for solid models topologi-
cal insensitivity is important, they conclude that the Reeb
graph technique requires some improvements. Bespalov et
al. [13] present preliminary research on a modification of
Hilaga’s method, which computes a scale-space decompo-
sition of a shape, represented as a rooted undirected tree in-
stead of a Reeb graph. This reduces the problem of com-
paring two 3D models to computing a matching among the
corresponding rooted trees. In summary, Reeb graphs de-
fined by a geodesic distance are suited for matching articu-
lated objects, but they are sensitive to topological changes.
Also, they cannot be applied to arbitrary meshes, because
topological problems like missing faces disturb the compu-
tation of geodesic distances.

3.3. Other methods

Finally, we discuss a number of other methods that are
applied for shape matching.

3.3.1. View based similarity

The main idea of view based similarity methods is that two
3D models are similar, if they look similar from all view-
ing angles. A natural application of this paradigm is the im-
plementation of query interfaces based on defining a query
by one or more sketches showing the query from different
views. Löffler [49] applies view based similarity to retrieve
3D models using a 2D query interface. In the preprocessing
phase, for each 3D model a descriptor is obtained consisting
of a number of binary images. In the query phase, a sketch
or a 2D image is used as a query to retrieve a number of 3D
models, whose images match the query. Also, Funkhouser
et al. [30] apply view based similarity to implement a 2D
sketch query interface. In the preprocessing phase a descrip-
tor of each 3D model is obtained by 13 thumbnail images of
boundary contours of the 3D object as seen from 13 ortho-
graphic view directions. Then in the query phase the user
defines a 3D shape query by drawing one or more sketches.
3D shape models are retrieved by comparing these sketches
with the descriptors from the shapes in the database using
image matching.



In the approach described by Cyr and Kimia [22], a
query is specified by a view of a 3D object. A descriptor
of a 3D object consists of a number of views of the 3D ob-
ject. The number of views of each object is kept small by
clustering views, and by representing each cluster with one
view, which is represented by a shock graph. They recog-
nize a 3D shape by comparing a view of the shape with all
views of 3D objects using shock graph matching. However,
they do not address the shock graph indexing problem, re-
sorting to a linear search of all views in the database in or-
der to retrieve an object.

Using shock matching, Macrine et al. [52] apply index-
ing using topological signature vectors to implement view
based similarity matching more efficiently. Also, recently,
view based similarity has been applied to retrieve 3D ob-
jects by Chen et al. [17]. They consider two models to be
similar, if they look similar from all viewing angles. There-
fore, a lightfield descriptor is introduced, which compares
ten silhouettes of the 3D shape obtained from ten viewing
angles distributed evenly on the viewing sphere. Each sil-
houette is a 2D image, encoded by its Zernike moments and
Fourier descriptors. Now, the dissimilarity of two shapes
is found as the minimal dissimilarity obtained by rotating
the viewing sphere of one lightfield descriptor relative to
the other lightfield descriptor. The running time of the re-
trieval process is reduced by a clever multi-step approach
supporting early rejection of non-relevant models. The ex-
perimental results show that their approach obtains better
retrieval results then the 3D harmonics approach proposed
by Funkhouser et al. [30] using a test database containing
1,833 models, at the cost of much more processing time.

3.3.2. Volumetric error based similarity

Novotni and Klein [60] describe a geometry similarity ap-
proach to 3D shape matching based on calculating a vol-
umetric error between one object and a sequence of offset
hulls of the other object. A drawback of their method is that
their dissimilarity measure is not symmetric and does not
obey the triangle inequality. Sánchez-Cruz and Bribiesca
present a method [69] relating the volumetric error between
two voxelized shapes to a transportation distance measuring
how many voxels have to move and how far to change one
shape into another. Since in general these voxelized shapes
will have many voxels, the computation of this transporta-
tion distance will be high.

3.3.3. Weighted point set based similarity

Another approach is based on shape descriptors consisting
of weighted 3D points. Dey et al. [24] present a method to
obtain a descriptor of a shape, given by a point sample, by
first decomposing the shape into its components. They ob-
tain as shape descriptor a weighted point set by represent-
ing each component by a weighted point, where the weight

of the point denotes the volume of the component. They
match weighted point sets by a measure which does not
obey the triangle inequality. Tangelder and Veltkamp [78]
use as shape descriptor a weighted point sets consisting of
points with a high curvature value. A measure for the curva-
ture is used as a weight. They compare weighted point sets
using a variant of the Earth Mover’s distance, the propor-
tional transportation distance, which obeys the triangle in-
equality [33]. Shamir et al. [72] propose a shape descriptor
consisting of a hierarchy of weighted point sets, represent-
ing spherical shape approximations. They utilize this multi-
resolution approximation to implement an algorithm to si-
multaneously align and compare two shapes.

3.3.4. Deformation based similarity

A number of methods [20, 8] compare a pair of 2D shapes
by measuring the amount of deformation required to regis-
ter the shapes exactly. These methods depend on the nat-
ural arc length parameterization of their contours, which
is not straightforwardly generalized to 3D. As a result,
methods that apply deformation for shape recovery [79] or
shape evolution [23] are very difficult to apply for 3D shape
matching.

4. Overview and conclusions

In this section we summarize our discussion on shape
matching methods from the previous section and indicate
directions for further research.

Feature based methods, categorized into (1) global fea-
tures, (2) global feature distributions, (3) spatial maps and
(4) local features, characterize shapes by their feature val-
ues. The shape matching methods from the first three cat-
egories represent the feature values by a vector in a high
d-dimensional vector space. Since the feature values are
typically computed by sampling 3D shapes, no restrictions
on the kind of shape model are imposed and in general
the descriptor computation is fast. Because a feature vec-
tor is a point in a fixedd-dimensional space, two models
can be compared fast by computing their distance in this
space. Also, indexing is straightforward and retrieval can
be implemented efficiently by nearest neighbour search. In
general these methods are robust, because they are based
on sampling. For most features, normalization is required
e.g. using the PCA, or rotation invariant shape descriptors
should be obtained (e.g. using Kazhdan’s method [43]).
The discriminative abilities of Osada’s method [66] have
been improved by further refinements of distribution meth-
ods as well as by several methods based on spatial maps
[43, 61, 84]. If details of shapes are not taken into ac-
count, these methods distinguish shapes very well. Details
may be taken into account using higher order moments, but
this has not been verified by experiments. A drawback of
these methods is that partial matching is not supported, be-



References Shape Triangle Efficiency Discriminative Partial Robustness Norma-
model inequality power matching lization

required
Global feature [21, 28, 42] all yes fast low no high no

[67, 88, 89] models
Global feature [37, 38, 63] all yes fast medium no high only [64]
distribution [64, 65, 66] models
Spatial map [5, 30, 43] all yes fast high no high not for

[46, 47, 61] models [43, 61, 85] [30, 43, 61]
[84, 85, 86]

Local feature [18, 41, 45] mesh unknown medium medium yes medium no
[74, 87]

Model graph [19, 26, 27, 29] solid not applicable medium medium yes medium no
[53, 54, 55, 91] except [91] in practice

Skeleton [39, 51, 76] volume not applicable medium medium yes medium no
in practice

Reeb graph [12, 13, 15, 34] volume not applicable medium medium yes medium no
in practice

View [17, 22, 30] mesh [17] medium high [17] no high no
[49, 52]

Volumetric error [60, 69] volume [69] fast [60] medium no high yes
Weighted point set [24, 72, 78] mesh [78] medium medium no medium yes
Deformation [23, 79] mesh unknown slow medium no high no

Table 1. Comparison of shape matching methods. References indicate which papers provide the indicated property. If no ref-

erence is indicated the property is valid in general.

cause they do not encode the relation between the features
and parts of an object. Further, these methods provide no
feedback to the user about why shapes match. Compared
to the methods from the first three categories, local feature
methods, which compute feature value vectors for a num-
ber of surface points, matching is less efficient, efficient in-
dexing is not straightforward, and the obtained dissimilarity
measure is not obey the triangle inequality. But the local-
ity of the method provides opportunities for partial match-
ing. Therefore, more research on these methods is worth-
while.

Model graphs are extracted from solid model representa-
tions [35] used by most CAD systems. Therefore, the model
graph based approaches are only applicable to solid models,
while skeletal graph and Reeb graph approaches are appli-
cable to volume models including models of natural shapes
like humans and animals represented as volumes. The only
exception is the model graph based approach by Zucker-
berger et al. [91], which is also applicable to natural shapes.

For graph based descriptors the complexity of the ex-
act computation of a metric obeying the triangle inequal-
ity prohibits practical application. Hence, the efficient im-
plementation of approximate matching methods is a cur-
rent research issue. Pure graph based methods have a lim-
ited discriminating power, because only topology is taken
into account. To improve discriminative abilities most au-
thors apply graph based matching in combination with other
methods. For instance, Sundar et al. [76] match two skele-
tal graphs based upon the topology and radial distance about
the edges of the skeletal graphs. For graph based methods,

minor changes in topology may result in significant differ-
ences in similarity. Hence, these methods are less robust
than feature based methods. Advantages of graphs based
methods are that no pose normalization is required, and that
a graph based structure is suited to implement partial match-
ing.

The view based similarity approach recently imple-
mented by Chen et al. [17] provides good retrieval re-
sults at the cost of processing time. It does not require
pose normalization, because its similarity comparison is ro-
tation independent. Since their experimental results,
obtained with their own database, show better discrimina-
tive abilities than other methods, it would be interesting
to compare these methods using other databases. The vol-
umetric error approach implemented by Novotni et al.
[60] allows fast matching, but uses a dissimilarity mea-
sure that does not obey the triangle inequality. In contrast,
Sánchez-Cruz and Bribiesca [69] use a pseudo-metric dis-
similarity measure which is expensive to compute. Among
the weighted point set approaches only Tangelder et al.
use a pseudo-metric to compare weighted point sets. Fi-
nally, deformation based methods which have been applied
to 2D shapes, are too slow for 3D shape matching. Ta-
ble 1 summarizes the above discussion with respect
to several requirements on content based 3D shape re-
trieval.

We identify the follow research issues:

• Comparison using benchmarks: Comparison of dif-
ferent shape matching methods using publicly avail-
able benchmark databases, containing models classi-



fied in different categories containing similar shapes.
Due to the lack of publicly available benchmarks in the
past, it was not possible to compare the shape matching
results obtained by different researchers. Very recently,
the first benchmarks for mesh models are made avail-
able at web pages from Princeton university [2, 73],
the university of Konstanz [3], and Utrecht University
[4, 78]. The Princeton Shape Benchmark database con-
tains 1,834 3D models downloaded from the web, sub-
divided into a training set and a test set, containing 907
models each, classified into 90 and 92 classes respec-
tively. The database at the university of Konstanz pro-
vides a test set containing 473 models classified into 55
classes, and 1366 unclassified models. The database at
the university of Utrecht consists of 512 models clas-
sified into six categories. To the best of our knowledge
no such publicly available benchmark for volume mod-
els is available yet.

• Obtaining rotation invariance : To obtain rotation in-
variant dissimilarity measures, Vranić et al. [85] advo-
cate the use of the continuous PCA method for pose
normalization, while Kazhdan et al. [43], and Novotni
and Klein [61], favour using rotation invariant shape
descriptors that need no pose normalization. Further
research is needed to compare both approaches using
the same benchmarks and the best PCA method.

• Efficient indexing: The vantage method [83] can
be applied to compute an efficient index struc-
ture for pseudo-metrics that require much computing
time. Also, clustering ofd-dimensional feature vec-
tors [9] can be applied for efficient indexing. For graph
descriptors the development of an efficient index-
ing method is a major research topic. For instance, Se-
bastian et al. [71] describe a promising approach to
indexing shock graphs.

• Partial matching: Local feature based methods and
graph methods seem to be applicable to partial match-
ing, but no practical results are known at present.

• Combining shape matching methods: Since the ca-
pabilities of feature based methods (fast computation,
pseudo-metric, discriminative abilities, robustness) are
orthogonal to the capabilities of graph based methods
(partial matching, no normalization required), combin-
ing different approaches may produce more power-
ful shape matching methods. Also combining geom-
etry and topology based approaches may produce bet-
ter shape matching methods.
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