
A Formulation of Boundary Mesh Segmentation
Ariel Shamir

The Interdisciplinary Center, Herzliya
arik@idc.ac.il

Abstract

We present a formulation of boundary mesh segmentation
as an optimization problem. Previous segmentation so-
lutions are classified according to the different segmenta-
tion goals, the optimization criteria and the various algo-
rithmic techniques used. We identify two primarily dis-
tinct types of mesh segmentation, namely parts segmenta-
tion and patch segmentation. We also define generic algo-
rithms for the major techniques used for segmentation.

1 Introduction

Mesh segmentation (or partitioning) has become a key
ingredient in many mesh manipulation algorithms in re-
cent years. These include parametrization, texture map-
ping, shape matching, morphing, multi-resolution model-
ing, mesh editing, compression and more. Numerous tech-
niques presented for segmentation were developed and
some were borrowed from image segmentation, finite el-
ement meshes partitioning, unsupervised machine learn-
ing and other fields. Based on a survey of the different
techniques, this paper introduces a unified formulation of
the problem and presents classification of the different ap-
proaches.

A three dimensional boundary mesh M is defined as a
tuple {V,E,F} of vertices V = {pi|pi ∈ R3

,1 ≤ i ≤ m},
edges E = {(pi, p j)|pi, p j ∈ V}, and faces F , which are
usually triangles F = {(pi, p j, pk)|pi, p j, pk ∈V}, but can
also include other types of planar polygons (Figure 1). We
use the term boundary mesh to distinguish these meshes
from 3D volumetric meshes (e.g. tetrahedral), and to em-
phasize the fact that these meshes represent a 2D surface
embedded in 3D. There are many constraints on the rela-
tions between the different elements (e.g. vertices, edges
and faces) of the mesh which impose a valid representa-
tion. For example, in a 2-manifold mesh the neighborhood
of every point which lays on the mesh is homeomorphic to
a disk. In water-tight meshes the mesh will not contain
any boundary edges. Generally we will restrict our dis-
cussion to 2-manifold boundary mesh representation, al-
though many of the techniques reviewed do not directly
rely on such constraints to work correctly.

Our basic definition of mesh segmentation is as follows:

Mesh segmentation Σ: Let M be a 3D
boundary-mesh, and S the set of mesh elements

Figure 1: Vertices, faces and edges in a 3D boundary
mesh.

which is either V ,E or F . A segmentation Σ of
M is the set of sub-meshes Σ = {M0, . . . ,Mk−1}
induced by a partition of S into k disjoint sub-
sets.

Using a sub-set of elements S′ ⊂ S, an induced sub-mesh
M′ ⊂ M can be created by choosing all vertices which are
included in S′ as V ′, and then defining M′ = {V ′

,E ′
,F ′}.

Where E ′ = {(pi, p j) ∈ E|pi, p j ∈ V ′} are all edges in
which both vertices are a part of V ′, and F ′ is defined sim-
ilarly as F ′ = {(pi, p j, pk) ∈ F |pi, p j, pk ∈ V ′}. As can
be seen, S can either be the vertices, edges or faces of
the mesh and the partitioning of S induces a segmentation
of M. Most mesh segmentation algorithms partition the
faces of the mesh (i.e. S = F), some partition the vertices
(S = V), and few the edges (S = E).

The key question in all mesh segmentation problems is
how to partition the set S. Obviously, this relies heavily
on the application in mind. However, one can formulate
a mesh segmentation problem as an optimization problem
by defining a specific criterion function J : 2S → R which
is a function of the partitioning of S. This is done in the
following manner:

Mesh segmentation as an optimization prob-
lem: Given a mesh M and the set of elements
S ∈ {V,E,F}, find a disjoint partitioning of S
into S0, . . . ,Sk−1 such that the criterion func-
tion J = J(S0, . . . ,Sk−1) be minimized (or maxi-
mized) under a set of constraints C .

The set of constraints can give conditions both on the
partitioning subsets Si such as a limit on the number of el-
ements, and on the segmentation sub-meshes Mi induced
by the partition. For instance, that each sub-mesh be con-
nected or be homeomorphic to a disk. In the simplest case
C can be empty.

Figure 2: Part of the face-adjacency dual-graph of a mesh.

There are at least three closely related fields in com-
puter science where similar segmentation or partitioning
problems are encountered and where there is a large body
of literature on these subjects. These are image segmen-
tation [1, 2, 3], finite-element and simulation meshes par-
titioning [4, 5, 6, 7], and point-sets clustering in statistics
and machine learning [8, 9, 10]. As we would like to con-
centrate on recent results in 3D boundary mesh segmen-
tation, it is out of the scope of this paper to review these
fields. Furthermore, although similar techniques can be
applied in these fields, there are also some notable differ-
ences between them and 3D boundary mesh segmentation.
Images are highly regular and are not embedded in higher
dimensional space. Volumetric meshes for simulation are
also full dimension meshes, hence their geometric proper-
ties are different than boundary meshes. Furthermore, the
goal of their partitioning is usually to increase load balanc-
ing of computation between processors and reduced their
communication. This means that the geometry of the mesh
does not play as central role as in boundary embedded
meshes. Point-sets in statistics are often defined in higher
dimensions representing abstract notions and do not hold
any explicit connectivity relation and hence are different
in nature than 3D meshes.

A most useful analogy of mesh segmentation and graph
partitioning is often introduced by defining the dual graph
of the mesh [11]. Let S be the set of elements partitioned
in M. We build the dual graph G of M by representing
each element in S by a node in G and defining the edges in
G by the adjacency relation in M of the elements of S. For
instance, if S = F then each node in G will represent a face
in M and each edge will connect adjacent faces (Figure 2).
When S = V each node in G will represent a vertex in M,
and the edges in G will in fact be the edges in M.

Using such a representation, a mesh segmentation prob-
lem can be cast as a (constrained) graph partitioning prob-
lem. In fact, by examining this analogy one can conclude
that mesh segmentation is at least an NP-complete prob-
lem and often NP-hard (partitioning of a graph into ap-
proximately equal subsets of nodes so that the number of

cut edges between the subsets is minimized is NP com-
plete [12]). Furthermore, if |Σ| = k and |S| = n, then a
complete enumeration of all possible segmentations is un-
feasible as the search space is of order kn. This means we
must resort to approximate solutions in feasible computa-
tion time.

We have classified the possible approximate solutions
for mesh segmentation according to the approaches taken
as follows:

1. Region growing.

2. Hierarchical clustering.

3. Iterative clustering.

4. Spectral clustering.

5. Other approaches.

In the following sections we elaborate on each of these
approaches, define a generic algorithm for the main ap-
proaches, and classify the different mesh segmentations
techniques found in literature. We have tried to detach the
technique from the goal of segmentation and the criterion
functions used. This view enhances the commonality of
different works. Nevertheless, We also examine the dif-
ferent technique in view of their application domain or
segmentation objective, and present constraints and opti-
mization criteria which are frequently used in several al-
gorithms.

2 Segmentation Type and Objectives

The type of mesh segmentation desired and the criterion
function definition for optimization are affected by the
segmentation objective. We distinguish between two dif-
ferent principal types of mesh segmentation. The first,
which we will term patch-type segmentation, creates disk-
like patches which obey certain geometric properties such
as planarity, size or convexity. The second, which we will
term part-type segmentation, is targeted more at partition-
ing the object defined by the mesh into meaningful com-
ponents (Figure 3).

2.1 Patch-type Segmentation
Patch-type segmentation is often used for texture map-
ping [14, 15], building charts [16] and geometry-image
creation [17]. In such applications the sub-mesh patch
must be topologically equivalent to a disk and must
not impose large distortion after parametrization onto
2D. Parametrization driven segmentations are also used
in [18].

Figure 3: Two different types of mesh segmentation: part-
type segmentation (left, taken from [13]) and patch-type
segmentation (right, taken from [14])

Other applications where patch-type segmentation is
used are remeshing and simplification [19, 20, 21, 22, 23,
24, 25]. In such applications, each patch is replaced ei-
ther by one or a set of planar polygons, hence planarity is
the desired property of the patches. Other patch-type de-
compositions impose convexity constraint [26] or constant
curvature [27, 28].

In morphing, complex transformations between shapes
can be simplified by a reduction to transformations be-
tween sub-patches [29, 30, 23].

For compression purposes by spectral analysis in [31]
the set of mesh vertices is partitioned. The main motiva-
tion for breaking the mesh into smaller sub-meshes is to
reduce the size of the Laplacian matrix of each sub-mesh
for eigenvector computation.

Other applications which benefit from patch-type seg-
mentation include radiosity, where the form-factor cal-
culations usually uses planar patches, collision-detection,
where bounding boxes are used on whole sub-mesh
patches for efficiency [21], and animation with subdivi-
sion surfaces [32].

2.2 Part-type Segmentation

Part-type segmentation creates larger sub-meshes which
often correspond to physical 3D parts of the object. This
type of segmentation can assist shape matching and shape
reconstruction [23, 33] by recognizing object parts. Such
part matching can also be utilized for morphing [34]. Ob-
ject part decomposition has also facilitated object skeleton
definition which in turn was used for deformations and
animation [35]. Lastly, bounding boxes defined around
whole object parts can assist in fast collision detection cal-
culations [36].

3 Constraints and Partitioning Criteria

No matter what algorithm is used for mesh segmentation,
the most important factor affecting the result is the criteria
used for partitioning and the constraints imposed on the
process. The different criteria and constraints should be
chosen based on the goal of segmentation. Nevertheless,
some are used more frequently, hence we present them in-
dependent of the algorithm and goal of segmentation.

Some typical constraints regard the cardinality of the
partition element sets:

• To eliminate too small or too large partitions, a bound
on the maximum and minimum number of elements
in each part is imposed.

• To create a more balanced partition, a bound on the
ratio between the maximum and minimum number of
elements in all parts is used.

Other constraints are defined on the geometry of the
sub-meshes induced by the partitioning:

• Maximum/minimum area of sub-mesh.

• Maximum/minimum length of diameter or perimeter
of sub-mesh.

• Maximum/minimum ratio of diameter or perimeter to
area (a bias towards round sub-meshes).

• Convexity.

Lastly, topological constraints are also used to restrict
the sub-mesh shape:

• Restriction to a single connected component.

• Restriction to a disk topology.

In terms of the criterion function, several segmentation
algorithms choose planarity as the leading criteria to opti-
mize. This criteria assists parametrization, simplification,
texture mapping and other algorithms. Different works
have used different types of norms to define planarity.
Nevertheless, these are mostly a variants of the following:

L∞ distance norm: given a cluster representative plane
ax + by + cz + d = 0, for any vertex v = (vx,vy,vz)
it measures the maximum distance from the plane:
|(vx,vy,vz,1) · (a,b,c,d)| ≤ ε

L2 distance norm: given a cluster representative plane
ax + by + cz + d = 0, and a set of vertices
vi it measures the average distance from plane:
1
k ∑k

i=1((vx,vy,vz,1)i · (a,b,c,d))2 ≤ ε

L∞ orientation norm: given a cluster representative
plane ax + by + cz + d = 0, for any face (or vertex)
normal n = (nx,ny,nz) it measures the maximum
difference of normals: (1− (nx,ny,nz) · (a,b,c)) ≤ ε

L2 orientation norm: given a cluster representative plane
ax + by + cz + d = 0, and a set of face (or vertices)
normals ni it measures the average difference of nor-
mals: 1

A ∑k
i=1

1
Ai

(1− (nx,ny,nz)i · (a,b,c)) ≤ ε , where
Ai is a weighting factor for the region of the normal
and A = ∑i Ai. For instance Ai could be the area of
the face for face normals, or simply 1 for uniform av-
eraging.

In order to cluster non planar regions which are still sim-
ilar geometrically a number of other measures are often
used:

• Geodesic distance on the mesh.

• Difference in normals.

• Difference in the dihedral angles between faces.

• Differences in curvature.

4 Segmentation Techniques

In this section we classify previous mesh segmentation al-
gorithms according to the approximation technique used
to reach a solution.

4.1 Region Growing
The simplest of all possible approaches for approximation
is the local-greedy approach which we term region grow-
ing. The algorithm for region growing starts with a seed
element from S and grows a sub-mesh incrementally as
follows:

Region Growing Algorithm
Initialize a priority queue Q of elements
Choose a seed and insert to Q
Create a cluster C from seed
Loop until Q is empty

Get the next element s from Q
If s can be clustered into C

Cluster s into C
Insert s neighbors to Q

The main difference between various algorithms which
use region growing is in the criteria which determines if an
element can be added to an existing cluster. The priority
used in the queue is usually tightly coupled to this criteria
as well. Other issues in region growing include the seeds

selection mechanism, dealing with too small regions (for
example if a single face cannot be clustered to any of its
neighboring clusters), and post-processing of the segmen-
tation borders for smoothing or straightening.

The super-face algorithm [37, 20] uses a region growing
algorithm with a set of representative planes for the cluster
approximated by an ellipsoid. The clustering criteria used
are an L∞ face-distance (distance of all face vertices) and a
variant of the face-normal criteria along with a geometric
constraint that prevents a face from ‘folding-over’ it’s rep-
resentative planes. The seed faces are chosen randomly.
The borders between the segments are straightened in a
post processing stage. Convex decomposition of the mesh
also uses region growing with random starting faces [26].
An additional size constraint was added to the convexity
criteria to achieve better decompositions.

For the purpose of creating a base triangle mesh with
subdivision connectivity, a multiple source region growing
is employed in [19]. The main idea is to create Voronoi-
like patches on the mesh and then use the dual of the
patches as the base triangular mesh. This imposes three
constraints on the patches: 1. A patch must be homeomor-
phic to a disk, 2. Two patches cannot share more than one
consecutive boundary, and 3. Not more than three patches
can meet at a vertex. An approximation of geodesic dis-
tance between faces is used as the priority for selecting
faces. The algorithm starts with one seed and then itera-
tively adds another seed in places where one of the con-
straints are violated, until the above constraints are met.

A method which simultaneously segments the mesh and
defines a parametrization is defined in [15]. The seed faces
are chosen randomly and greedy region growing is initial-
ized which is capable of optimizing different criteria. For
parametrization the criteria for adding a face to a region
measures the distortion caused to a triangle during flatten-
ing to 2D. This is done using the singular values of the
Jacobian of the affine transformation between the original
3D triangle and its counterpart in the plane.

Texture Atlas Generation in [16] uses region growing
but instead of using seed faces and growing outward, the
algorithm first extracts feature contours and uses them as
boundaries between charts to grows the region inward.
This also simplifies the test criteria which determines if
an element can be added to an existing cluster since the
boundaries are somehow pre-determined.

The watershed algorithm, originally used for images
segmentation, is based on the definition of a height func-
tion on the mesh. The algorithm first finds and labels all
local minima in the function. Each minimum also serves
as the initial seed for a surface region. A region is grown
incrementally from each seed until it reaches a ridge or
maxima in the function, hence partitioning the function

terrain into regions. This region growing algorithm re-
turns in many variations where the main difference be-
tween them is the definition of the feature energy or the
height function in which “water rises”.

A simulation of electrical charge distribution over the
mesh is used in [38] for the height function definition.
The charge density is very high and very low at sharp
convexities and concavities, respectively. Thus, the ob-
ject part boundary can be located at local charge density
minima. In [27, 28] the function is based on vertex dis-
crete curvature calculations [39, 40]. In [41] the algorithm
approximates the feature strength of each vertex based on
“normal-voting”, i.e. the surface normal variation within a
neighborhood of a vertex, and in [23] dihedral angles be-
tween faces is used. A more elaborate functional is used
in [42] by defining a directional curvature height function
between each two adjacent vertices u and v using the Eu-
ler’s formula: fuv = κmax cos2 θ + κmin sin2 θ , where κmax
and κming are the maximum and minimum curvatures at u,
and θ is the angle between the maximum principal direc-
tion and the vector connecting u to v in the tangent plane of
u. In [33] this height function is further quantized into dis-
crete values preventing spills from one region to another.

4.2 Hierarchical Clustering
The search for local optimum of each region separately
may sometimes create unsatisfactory global results. For
example, the number of regions depends heavily on the
choice of initial seeds. Furthermore, there are times when
a hierarchical segmentation structure is beneficial for spe-
cific applications. Hierarchical clustering, while still a
greedy approach, can be seen as “global-greedy” since it
always chooses the best merging operation for all clusters
and doesn’t concentrates on growing one:

Hierarchical Clustering Algorithm
Initialize a priority queue Q of pairs
Insert all valid element pairs to Q
Loop until Q is empty

Get the next pair (u,v) from Q
If (u,v) can be merged

Merge (u,v) into w
Insert all valid pairs of w to Q

Similar to region-growing, the difference between var-
ious hierarchical clustering algorithms lies mainly in the
merging criteria and the priority of elements in the queue.

Hierarchical clustering starts initially when each face is
its own cluster. Each pair of clusters is assigned a cost
for merging. Hierarchical face clustering [21] uses L2 dis-
tance and orientation norms from representative planes as
a measure of planarity, but formulates them using quadric
error metric for efficient computation. The algorithm also

Figure 4: Raw segmentation results may require post-
processing to smooth the boundary between patches (ex-
ample taken from [14]).

uses a bias term to create circular compact cluster shapes
by using the ratio between the square of the perimeter and
4πA where A is the area of the cluster.

Mean squared distance of a patch to the best fitted plane
is also used in [14] for the creation of charts. However,
the measure is integrated on all patch faces and not only
on vertices. Compactness of patches is measured sim-
ply as the squared perimeter length. Additional tests are
performed before merging two clusters to take care of
topology constraints such that each clustered patch re-
main homeomorphic to a disk. In post processing smooth
boundaries between the charts are created calculating con-
strained shortest path (Figure 4).

Although working on the dual graph of the mesh in [22],
edge contracting according to a priority is similar to hier-
archical clustering. This is due to the fact that an edge
contraction in the graph is equivalent to a merge of two
clusters. The priority of edges used in the algorithm is a
combination of geometric and topological costs including
size, shape, curvature and more.

4.3 Iterative Clustering
In the two previous methods the number of resulting clus-
ters is unknown in advance. A different type of search
for optimal segmentation is defined by iteratively search-
ing for the best clustering given that the number of clus-
ters is fixed. The basis of this approach is the k-means
algorithm, sometimes referred to as Lloyd or Lloyd-Max
algorithm [43, 10]. The iterative process begins with k rep-
resentatives representing k clusters. Each element is then
assigned to one of the k clusters. Subsequently, the k rep-
resentatives are re-calculated from the k-clusters and the
assignment process begins again. The process terminates
when the representatives stop changing:
Iterative Clustering Algorithm
Initialize k representatives of k clusters
Loop until representatives do not change

For each element s
Find the best representative i for s
Assign s to the ith cluster

For each cluster i
Compute a new representative

The key issue concerning iterative clustering algorithm
is convergence. The measure of ‘best’ representative for
an element and the computation of new representatives
from clusters should be chosen with care so that the pro-
cess converges. Other issues such as the choice of initial
representative can also affect the convergence and the final
result.

To create compatible segmentation of two objects for
morphing purposes, a k-means based face-clustering algo-
rithm is proposed in [34]. A distance measure between
faces is defined as a weighted combination of the approxi-
mate geodesic distance (the sum of distance from centroid
to the center of edge) and the difference in dihedral angle.

After representatives are chosen each face is assigned
to the cluster of its closest representative. New represen-
tatives are chosen as the faces which minimize the sum of
distances to all other faces in the cluster

Another variant of k-means algorithm is presented
in [25] for the creation of planar shape proxies. Two differ-
ent error metrics are defined. L2 measures the integral over
a patch of the squared error between point on the patch and
its planar proxy. The point-difference is the distance be-
tween the point on the patch and its orthogonal projection
on the proxy.

A more superior metric both in terms of results and in
terms of simplicity of calculation is L2,1, which is defined
simply as the L2 norm on the normal field of the mesh.
This means the error is an integral over the difference be-
tween the normal of a point in the patch and the proxy
normal.

These metrics are used also to define new proxy repre-
sentatives in each iteration. In order to keep the clustered
regions connected and non-overlapping, only triangles ad-
jacent to currently grown regions are inserted to the queue.

Mesh charts for geometry image creation are defined
in [17] using iterative clustering. This algorithm also en-
sured connectivity by adding only neighboring triangles to
existing charts. The cost of adding is a measure of geo-
metric distance between the face and its neighboring face
in the chart, and difference between the face normal and
the chart normal.

The new seeds for the next iteration are simply the cen-
tral faces in each chart. To assure the disk topology of all
charts some face assignments are disallowed. This may
lead to a possibility of an orphan face left not clustered.
The solution to this is to add this face as a seed in the next
iteration, hence enlarging k by one. This idea is also used
to initialize the seed set by adding the last face assigned in
the previous iteration as a new seed in the next iteration,
starting from 1 seed until k seeds are created.

4.4 Spectral Analysis

Spectral graph theory [44] states the relationship between
the combinatorial characteristics of a graph and the alge-
braic properties of its Laplacian [11]. If A is the adjacency
matrix of a graph G and D is a diagonal matrix which holds
the degree (valance) of vertex i as di,i, then the Laplacian
of G is defined as the matrix L = D−A.

Let {ξ0,ξ1, . . . ,ξn−1} be the eigenvectors of L. By em-
bedding the graph G into the space Rd using d first eigen-
vectors, one can reduce the combinatorial graph parti-
tioning problem to a geometric space-partitioning prob-
lem [45, 11].

The Laplacian matrix of the vertex adjacency graph was
used for mesh compression purposes in [31]. Due to high
computation cost the mesh was segmented into smaller
sub-meshes and each one treated separately. However,
these sub-meshes should be balanced in size and the edge
straddling the different sub-meshes should be minimized
in order to reduce the visual effects. These conditions are
similar to FEM mesh decomposition and hence MaTiS [4]
graph partitioning application was used.

Using a slightly different formulation in [46] a sym-
metric affinity matrix W ∈ Rn×n is constructed where for
all i, j, Wi j encodes the probability that face i and face j
can be clustered into the same patch 0 ≤ Wi j ≤ 1. This
matrix may be viewed as the adjacency matrix of a com-
plete (weighted) graph whose nodes are the mesh faces.
The Spectral analysis of this matrix creates a partitioning
which induces a segmentation of the mesh.

4.5 Other Methods

A hybrid algorithm between iterative clustering and graph
cut is proposed in [35]. At the initial stage iterative clus-
tering is used to create general partitioning. However this
partition remains fuzzy around the boundary regions of the
segments and a final decomposition is created using graph
cut flow algorithm. The algorithm is also capable of creat-
ing hierarchical decomposition by top down binary parti-
tioning.

An approach based on skeletonization is proposed
in [36]. First an approximation of the skeleton of the mesh
is extracted. Next, a plane perpendicular to the skeleton
branches is sweeped over the mesh and critical points are
identified. Each critical skeleton point is used to define
a cut using the sweep plane which segments the mesh to
different parts. Using this scheme, the segmentation is de-
fined implicitly by the creation of cuts.

Another scheme which targets the segment boundaries
instead of building the segments by clustering is pre-
sented as mesh-scissoring in [13]. Following the minima-
rule from perception [47], minimum curvature feature-

contours are extracted from the mesh. These contours
are then closed to form loops around mesh parts. Finally
snakes are used to smooth the cuts which define a part-type
segmentation of the object (Figure 3).

An approach based on image segmentation is presented
in [24]. The problem of 3D boundary mesh segmentation
is reduced to image segmantation by using geometry im-
ages [48] to represent the mesh. The portioning of the
image imposes a mesh segmentation in 3D.

Lastly, several manual segmentation and partitioning
are found in literature [29, 30, 49]. These usually define
the boundaries between segments either explicitly or by
designating some vertices and calculating shortest path be-
tween them.

5 Concluding Remarks

We have presented the main approaches for boundary
mesh segmentation and identified different optimization
criteria used. It is obvious that the key factor in choos-
ing both the algorithm and the criteria is the application in
mind. For example, we have identified a distinct difference
between the results of patch-type segmentations and part-
type segmentations. This difference is mainly due to the
differences in the goals of segmentation. For this reason, it
was difficult to assess quality and compare the different re-
sults, and we focused more on extracting and formulating
the major algorithmic techniques used to date. Although
there are already numerous techniques to create mesh seg-
mentations, it seems that directions to address this problem
are only beginning.

6 Acknowledgments

The author would like to thank Daniel Cohen-Or for fruit-
ful discussions and comments, and Hugeus Hoppe for per-
mission to use images of his work.

References

[1] X. Zhuang, Y. Huang, K. Palaniappan, and Y. Zhao, “Gaus-
sian mixture density modeling: Decomposition and appli-
cations,” IEEE Transactions on Image Processing, vol. 5,
pp. 1293–1302, September 1996.

[2] C. Tomasi and R. Manduchi, “Bilateral filtering for gray
and color images,” in Proc. of the sixth international Con-
ference of Computer Vision, pp. 839–846, 1998.

[3] D. Comaniciu and P. Meer, “Mean shift: A robust approach
towards feature space analysis,” IEEE Trans. Pattern Anal-
ysis and Machine Intelligence, vol. 24, pp. 603–619, May
2002.

[4] G. Karypis and V. Kumar, “Metis: A software package
for partitioning unstructured graphs, partitioning meshes,

and computing fill-reducing orderings of sparse matrices..”
http://wwwusers.cs.umn.edu/ karypis/metis/metis.html,
1998.

[5] G. Karypis and V. Kumar, “Multilevel algorithms for multi-
constraint graph partitioning,” in Proceedings of the 36th
ACM/IEEE conference on Design automation conference,
(New Orleans, Louisiana), pp. 343 – 348, 1999.

[6] C. Nikos and D. Nave, “Simultaneous mesh generation
and partitioning for delaunay meshes,” in Proceedings of
the 8th International Meshing Roundtable, (South Lake
Tahoe), pp. 55–66, 1999.

[7] I. Moulitsas and G. Karypis, “Multilevel algorithms for
generating coarse grids for multigrid methods,” in Proceed-
ings of the 2001 ACM/IEEE conference on Supercomput-
ing, (Denver, Colorado), pp. 45–45, 2001.

[8] R. Arabie, L. Hubert, and G. DeSoete, eds., Clustering and
Classification. River Edge, NJ: World Scientific Publishers,
1996.

[9] S. J. Roberts, “Parametric and non-parametric unsuper-
vised cluster analysis,” Pattern Recognistion, vol. 30,
pp. 327–345, 1997.

[10] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classifica-
tion (2nd ed.). Wiley Interscience, October 2000.

[11] C. Gotsman, “On graph partitioning, spectral analysis, and
digital mesh processing,” in Proceedings of Shape Model-
ing International, (Seoul), pp. 165–169, 2003.

[12] M. Garey, D. Johnson, and L. Stockmeyer, “Some simpli-
fied np-complete graph problems,” Theoretical Computer
Science, vol. 1, pp. 237–267, 1976.

[13] Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, and H.-P. Seidel,
“Intelligent mesh scissoring using 3d snakes.” Submitted,
2004.

[14] P. Sander, J. Snyder, S. Gortler, and H. Hoppe, “Texture
mapping progressive meshes,” in Proceedings of ACM SIG-
GRAPH, pp. 409–416, 2001.

[15] O. Sorkine, D. Cohen-Or, R. Goldenthal, and D. Lischinski,
“Bounded-distortion piecewise mesh parameterization,” in
Proceedings of IEEE Visualization 2002, 2002.

[16] B. Levy, S. Petitjean, N. Ray, and J. Maillot, “Least
squares conformal maps for automatic texture atlas gen-
eration,” in ACM Computer Graphics, Proc. SIGGRAPH
2002, pp. 362–371, 2002.

[17] P. Sander, Z. Wood, S. Gortler, J. Snyder, and H. Hoppe,
“Multi-chart geometry images,” in Proceedings of the Eu-
rographics Symposium on Geometry Processing, pp. 146–
155, 2003.

[18] K. Inoue, I. Takayuki, Y. Atsushi, F. Tomotake, and
S. Kenji, “Face clustering of a large-scale cad model for
surface mesh generation,” Computer Aided Design, vol. 33,
March 2001. The 8th International Meshing Roundtable
Special Issue: Advances in Mesh Generation.

[19] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Louns-
bery, and W. Stuetzle, “Multiresolution analysis of arbi-
trary meshes,” in Proceedings of ACM SIGGRAPH 1995,
pp. 173–182, 1995.

[20] A. Kalvin and R. Taylor, “Superfaces: Polygonal mesh sim-
plification with bounded error,” IEEE Computer Graphics
and Applications, vol. 16, no. 3, 1996.

[21] M. Garland, A. Willmott, and P. Heckbert, “Hierarchical
face clustering on polygonal surfaces,” in Proc. ACM Sym-
posium on Interactive 3D Graphics, March 2001.

[22] A. Sheffer, “Model simplification for meshing using face
clustering,” Computer Aided Design, vol. 33, pp. 925–934,
2001.

[23] E. Zuckerberger, A. Tal, and S. Shlafman, “Polyhedral
surface decomposition with applications,” Computers &
Graphics, vol. 26, no. 5, pp. 733–743, 2002.

[24] I. M. Boier-Martin, “Domain decomposition for multireso-
lution analysis,” in Proceedings of the Eurographics Sym-
posium on Geometry Processing, pp. 29–40, 2003.

[25] D. Cohen-Steiner, P. Alliez, and M. Desbrun, “Varia-
tional shape approximation,” ACM Transactions on Graph-
ics (Proceedings SIGGRAPH 2004), vol. 23, p. to appear,
1994.

[26] B. Chazelle, D. Dobkin, N. Shourhura, and A. Tal, “Strate-
gies for polyhedral surface decomposition: An experimen-
tal study,” Computational Geometry: Theory and Applica-
tions, vol. 7, no. 4-5, pp. 327–342, 1997.

[27] A. P. Mangan and R. T. Whitaker, “Surface segmentation
using morphological watersheds,” in Proc. IEEE Visualiza-
tion 1998 Late Breaking Hot Topics, 1998.

[28] A. Mangan and R. Whitaker, “Partitioning 3d surface
meshes using watershed segmentation,” IEEE Transactions
on Visualization and Computer Graphics, vol. 5, no. 4,
pp. 308–321, 1999.

[29] A. Gregory, A. State, M. Lin, D. Manocha, and M. Liv-
ingston, “Interactive surface decomposition for polyhedral
morphing,” The Visual Computer, vol. 15, pp. 453–470,
1999.

[30] M. Zockler, D. Stalling, and H.-C. Hege, “Fast and intu-
itive generation of geometric shape transitions,” The Visual
Computer, vol. 16, no. 5, pp. 241–253, 2000.

[31] Z. Karni and C. Gotsman, “Spectral compression of mesh
geometry,” in Proceedings of ACM SIGGRAPH 2000,
pp. 279–286, 2000.

[32] T. DeRose, M. Kass, and T. Truong, “Subdivision surfaces
in character animation,” in ACM Computer Graphics, Proc.
SIGGRAPH 1998, pp. 85–94, 1998.

[33] D. Page, M. Abidi, A. Koschan, and Y. Zhang, “Object
representation using the minima rule and superquadrics for
under vehicle inspection,” in Proceedings of the 1st IEEE
Latin American Conference on Robotics and Automation,
pp. 91–97, 2003.

[34] S. Shlafman, A. Tal, and S. Katz, “Metamorphosis of poly-
hedral surfaces using decomposition,” Computer Graphics
forum, vol. 21, no. 3, 2002. Proceedings Eurographics
2002.

[35] S. Katz and A. Tal, “Hierarchical mesh decomposition
using fuzzy clustering and cuts,” ACM Transactions on
Graphics (Proceedings SIGGRAPH 2003), vol. 22, no. 3,
pp. 954–961, 2003.

[36] X. Li, T. Toon, T. Tan, and Z. Huang, “Decomposing poly-
gon meshes for interactive applications,” in Proceedings of
the 2001 symposium on Interactive 3D graphics, pp. 35–42,
2001.

[37] A. Kalvin and R. Taylor, “Superfaces: Polyhedral approx-
imation with bounded error,” in SPIE Proceedings 2164,
pp. 2–13, 1994.

[38] K. Wu and M. Levine, “3d part segmentation using simu-
lated electrical charge distributions,” IEEE transactions on
pattern analysis and machine intelligence, vol. 19, no. 11,
pp. 1223–1235, 1997.

[39] M. Meyer, M. Desburn, P. Schröder, and A. H. Barr, “Dis-
crete differential - geometry operators for triangulated 2-
manifolds,” in Proceedings VisMath ’02, (Berlin), 2002.

[40] S. Pulla, A. Razdan, and G. Farin, “Improved curvature
estimation for watershed segmentation of 3-dimensional
meshes.” manuscript, 2001.

[41] Y. Sun, D. L. Page, J. K. Paik, A. Koschan, and M. A.
Abidi, “Triangle mesh-based edge detection and its ap-
plication to surface segmentation and adaptive surface
smoothing,” in Proceedings of the International Confer-
ence on Image Processing ICIP02, Vol. III, (Rochester,
N.Y.), pp. 825–828, 2002.

[42] D. Page, A. Koschan, and M. Abidi, “Perception-based
3d triangle mesh segmentation using fast marching wa-
tersheds,” in Conference on Computer Vision and Pattern
Recognition (CVPR ’03) - Volume II, pp. 27–32, 2003.

[43] S. Lloyd, “Least square quantization in pcm,” IEEE Trans-
actions on Information Theory, vol. 28, pp. 129–137, 1982.

[44] F. R. K. Chung, Spectral Graph Theory. No. 92 in CBMS
Regional Conference Series in Mathematics, American
Mathematical Society, 1997.

[45] C. Alpert and S. Yao, “Spectral partitioning: The more
eigenvectors, the better,” in 32nd ACM/IEEE Design Au-
tomation Conference, (San Francisco), pp. 195–200, 1995.

[46] R. Liu and H. Zhang, “Segmentation of 3d meshes through
spectral clustering.” Submitted, 2004.

[47] D. Hoffman and M. Signh, “Salience of visual parts,” Cog-
nition, vol. 63, pp. 29–78, 1997.

[48] X. Gu, S. Gortler, and H. Hoppe, “Geometry images,” ACM
Transaction on Graphics, Special issue for SIGGRAPH
conference, vol. 21, no. 3, pp. 355–361, 2002.

[49] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer,
A. Tal, S. Rusinkiewicz, and D. Dobkin, “Modeling by ex-
ample,” ACM Transactions on Graphics (Proceedings SIG-
GRAPH 2004), vol. 23, p. to appear, 2004.

