

Overview

- Radiometry
- Local light transport
- Definition of BRDF
- BRDF properties and common BRDFs
- Rendering equation

Radiometric Units

- Light is a form of energy

 Measured in Joules (J)
- Power: energy per unit time
- Measured in Joules/sec = Watts (W)
- Also called Radiant Flux (Φ)

Isotropic Point Source

• Radiant flux leaves point source in all directions

*

• Flux distributed evenly over sphere

 $E = \frac{\Phi}{4\pi}$

Radiance

• Flux per unit projected area per unit solid angle.

$$L = \frac{d\Phi}{dA_p \ d\vec{\omega}}$$

- Units watts per steradian m²
- We have now introduced projected area, a cosine term. $L = \frac{d\Phi}{d\Phi}$

$$dA\cos\theta \ d\bar{\omega}$$

- Radiance doesn't change with distance
 Therefore it's the quantity we want to measure in a ray tracer.
- Radiance proportional to what a sensor (camera, eye) measures.
 - Therefore it's what we want to output.

(the symbol ho is also used sometimes)

BRDF Representations

- Physically-based vs. phenomenological models
- Measured data
- Desired characteristics:
 - Fast to evaluate
 - Maintain reciprocity, energy conservation
 - For global illumination: easy to importance sample

Diffuse

• The simplest BRDF is "ideal diffuse" or *Lambertian*: just a constant

$$f_r(\omega_i \to \omega_o) = k$$

Note: does *not* include cos(θ_i)
 – Remember definition of irradiance

Ideal Mirror
• To conserve energy,

$$\int_{\Omega} f_{r,Mirror}(\omega_i \to \omega_o) \cos \theta_o d\omega_o = \rho$$
• So, BRDF is a delta function at direction of ideal
mirror reflection

$$f_{r,Mirror} = \frac{\delta(\theta_i - \theta_o) \delta(\varphi_i + \pi - \varphi_o)}{\cos(\theta_i)}$$

Phong BRDF

Phenomenological model for glossy reflection

I is a vector to the light source*r* is the direction of mirror reflection

• Exponent *n* determines width of specular lobe

• Constant k_s determines size of lobe

 $f_{r,Phong} = k_s (\hat{l} \cdot \hat{r})^n$

- So far, have assumed 4D BRDF
- Function of wavelength: 5D
- Fluorescence (absorb at one wavelength, emit at another): 6D
- Phosphorescence (absorb now, emit later): 7D
- Temporal dependence: 8D
- Spatial dependence: 10D
- Subsurface scattering: 12D
 - Polarization Wave optics effects (diffraction, interference)

"Cross product" of two plenoptic functions

Rendering Equation

• Next 3-4 weeks in the course: ways to solve the rendering equation

Radiometric and Photometric Units

Radiant energy	Luminous energy
Joule (J)	Talbot
Radiant flux or power (F)	Luminous power
Watt (W) = J / sec	Lumen (lm) = talbot / sec = $cd \cdot sr$
Radiant intensity (I)	Luminous intensity
W / sr	Candela (cd)
Irradiance (E)	Illuminance
W / m ²	$Lux = Im / m^2$
Radiance (L)	Luminance
W / m ² / sr	$Nit = Im / m^2 / sr$
Radiosity (B)	Luminosity
W / m ²	$Lux = Im / m^2$