Max Flow, Min Cut
COS b21

Kevin Wayne
Fall 2005

Soviet Rail Network, 1955

o
PO~

N R TIL g) s

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002

Minimum Cut Problem

Flow network.

« Digraph G = (V, E), nonnegative edge capacities c(e).

= Two distinguished nodes: s = source, t = sink.

. Assumptions: no parallel edges, no edges entering s or leaving t.

/ﬁ:\ VCT)\
A 15

% \VGL 10 sink
4
4

9
15
8

~.

6 15 10

capacity —~
30 7

10
source 5
15

Cuts

Def. Ans-t cut is a partition (A, B) of Vwiths€ Aand t € B.

Def. The capacity of a cut (A, B)is: cap(4,B) = 3 c(e)

eoutof 4

10 4 15 15 10
5 ,ﬁ/ 8 »(6) 10 5
4 15
A 15 e 10
4 30 7 Capacity =10 + 8 + 10 = 28

Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.

10 4 15 15
° # i :\?
4 15
A 15 6
4 30 7

Capacity =10 + 8 + 10 = 28

Flows

Def. Ans-t flow is a function that satisfies:

« Foreache€eE: 0 = f(e) = cle) (capacity)
. ForeachveV-{s,t}: 3Sf = Yfl (conservation)
eintov eoutof v

Def. The value of a flow fis: val(f) = 3 f(e) .

e outof s

10 | 9
10 40 15 15 0 10
4 8 9

@ ° @ g ® © ®
4 10
. 40 6 15 0
capacity — 15 10
flow — 14 14
3 Value = 28

Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.

® 5@ s ®

capacity — 15
flow — 14 14

Value = 28

Flows and Cuts
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

Sfle) - Tfle) = val(f)

coutof A einto A

10 0 6
10 A 15 15 0o 10
3 8 8
5 3 8 »(6) 10 0
v\
~ ! T 10

1 ~_ Value=10-4+8-0+10
A 30 7 SE

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

3 flo- 3 fle)=val(f).

eoutof A eintoA

Pf. val(f)

> f@

coutof s

by flow conservation, all terms ~ —» S| Zfle- 3 fle

exceptv =sare0 vEA \eoutof v cintov

> [= 3 f.

coutof A cinto A

Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the
value of the flow is at most the capacity of the cut.

Cut capacity = 30 = Flow value < 30

10 4 15 15 10
s —>@® ‘ ® o ®
A
4 6 15 10

C ity = 30
\QD % @ apacity

Flows and Cuts

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have
val(f) = cap(A, B).

Pf. vl(f) = 3 f@- 3 f@
eoutof A eintoA
s Yf@
eoutof A
< > cle)
eoutof A
= cap(A, B) .

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.
If val(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity =28 = Flow value < 28

o ®
1 9
15 15 0 10
8 9

Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = O for all edge e € E.
« Find an s-t path P where each edge has f(e) < c(e).
= Augment flow along path P.
« Repeat until you get stuck.

1

0 /O\ 0

20 10
30 0

10 20

0 0 Flow value = 0
) 4

Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = O for all edge e € E.
« Find an s-t path P where each edge has f(e) < c(e).
= Augment flow along path P.
« Repeat until you get stuck.

1
20 X /O\ 0
20 10
30 K20
10 20
0 X 20 Flow value = 20
v

Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = O for all edge e € E.
« Find an s-t path P where each edge has f(e) < c(e).
= Augment flow along path P.
« Repeat until you get stuck.
N locally optimality # global optimality

1 1
20 0 20 10
20 10 20 10
30 20 30 10
10 20 10 20
0 20 10 20
2

greedy = 20

opt = 30

Residual Graph

Original edge: e = (u,v) €E. % capacity

= Flow f(e), capacity c(e). Q 17 @
6
S flow

Residual edge.

= "Undo" flow sent.

. e=(u,v)and eR = (v, u).
- Residual capacity:

residual capacity

O

¢ (0 ={c(e)—f(e) ifeck ™ residual capacity

fe*) if e*EE

Residual graph: 6; = (V, E;).
= Residual edges with positive residual capacity.
. Ef={e:f(e)<c(e)} U {eR:f(e)>0}

Ford-Fulkerson Algorithm

EERNAN

=

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]
The value of the max flow is equal to the value of the min cut.

Pf. Let f be a flow. Then TFAE:
(i) There exists a cut (A, B) such that val(f) = cap(A, B).
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

(i) = (ii) This was the corollary to weak duality lemma.
(ii) = (iii) We show contrapositive.

« Let f be a flow. If there exists an augmenting path, then we can
improve f by sending flow along path.

Proof of Max-Flow Min-Cut Theorem

(i) = (i)
« Let f be a flow with no augmenting paths.

. Let A be set of vertices reachable from s in residual graph.
« By definition of A, s € A.

« By definition of f,+ & A.

val(f) = 3 flo- 3 f(o)

coutof A eintoA A B

= Y

coutof A @

= cap(A, B) «

original network

Analysis

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacities c; (e)
remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most val(f*) < nC iterations.
It can be implemented in O(mnC) time.
Pf. Each augmentation increase value by at least 1. =

Integrality theorem. If all capacities are integers, then there exists a
max flow f for which every flow value f(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant. =

Ford-Fulkerson: An Exponential Input

Q. Isgeneric Ford-Fulkerson algorithm polynomial in input size?
X

m, n, and log C

1 1
1R 0 1 X 1
(4 (4 (4 (4
1 X1 1 EX0
¢ ¢ ¢
6 0) 4 B 1 6 X v 1
2 2

Ford-Fulkerson: A Pathological Input

Q. Is Ford-Fulkerson algorithm finite?

Letr=
Max flow =1+ r +r2,

~ 0.618... [P2 = pn - pnel]

-1+ 45
2

Augmentations: first augment 1 unit, then repeatedly choose
path with lowest capacity.

Choosing Good Augmenting Paths

Goal: choose augmenting paths so that:
= Can find augmenting paths efficiently.
« Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
= Max bottleneck capacity.

. Sufficiently large bottleneck capacity.

« Fewest number of edges.

Shortest Augmenting Path: Overview of Analysis

L1. The length of the shortest augmenting path never decreases.

L2. After at most m augmentations, the length of the shortest
augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm performs at most
O(mn) augmentations. It can be implemented in O(m?n) time.

= O(m) time to find shortest augmenting path via BFS.

= O(m) augmentations for paths of exactly k edges. =

k<n

Shortest Augmenting Path: Analysis

number of edges

Level graph.
= Define ¢(v) = length of shortest s-v path in 6.

« Lg = (V, F)is subgraph of & that contains only those edges (u,v) EE
with ¢(v) = ¢(u) + 1.

= Compute L in O(m+n) time using BFS, deleting back and side edges.

« Pisashortest s-u path in G iff it is an s-u path L.

Le

Shortest Augmenting Path: Analysis

L2. After at most m augmentations, the length of the shortest

augmenting path strictly increases.
= At least one edge (the bottleneck edge) is deleted from L after

each augmentation.
« No new edges added to L until length of shortest path strictly

increases.

Shortest Augmenting Path: Analysis

L1. The length of the shortest augmenting path never decreases.
. Let f and f' be flow before and after a shortest path augmentation.
» LetLand L' be level graphs of 6; and G, -
= Only back edges added to G -
« Path with back edge has length greater than previous length.

Shortest Augmenting Path: Review of Analysis

L1. The length of the shortest augmenting path never decreases.

L2. After at most m augmentations, the length of the shortest
augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm performs at most
O(mn) augmentations. It can be implemented in O(m?n) time.

Note: ©(mn) augmentations necessary on some networks.

= Try to decrease time per augmentation instead.

= Dynamic trees = O(mnlogn) [Sleator-Tarjan, 1983]
. Simpleidea = O(mn?)

Shortest Augmenting Path: Improved Version

Two types of augmentations.
= Normal augmentation: length of shortest path doesn't change.
= Special augmentation: length of shortest path strictly increases.

L3. Group of normal augmentations takes O(mn) time.
= Explicitly maintain level graph - it changes by at most 2n edges
after each normal augmentation.
. Start at s, advance along an edge in L until reach t or get stuck.
- if reach t, augment and delete at least one edge
- if get stuck, delete node

Shortest Augmenting Path: Improved Version

augment
bottleneck edge

»(3

delete 3

got stuck,

O «" delete node

augment

bottleneck edge

Shortest Augmenting Path: Improved Version

augment

bottleneck edge

Stop: length of shortest path must have strictly increased.

Shortest Augmenting Path: Improved Version

Two types of augmentations.
= Normal augmentation: length of shortest path doesn't change.
= Special augmentation: length of shortest path strictly increases.

L3. Group of normal augmentations takes O(mn) time.
= At most n advance steps before you either
- get stuck: delete a node from level graph
- reach t: augment and delete an edge from level graph

Theorem. Algorithm runs in O(mn2) time.
» O(mn) time between special augmentations.
« At most n special augmentations.

History of Worst-Case Running Times

1951
1955
1970
1970
1970
1972
1973
1974
1983
1986

1997

Dantzig Simplex mn2Ct
Ford, Fulkerson Augmenting path _
Edmonds-Karp Shortest path _
Edmonds-Karp Fattest path m log C (m log n)
Dinitz Improved shortest path _
Edmonds-Karp, Dinitz Capacity scaling m?log Ct
Dinitz-Gabow Improved capacity scaling mnlog C*t
Karzanov Preflow-push nd
Sleator-Tarjan Dynamic trees mnlogn
Goldberg-Tarjan FIFO preflow-push mn log (n?/ m)

6Goldberg-Rao Length function

/I

T Edge capacities are between 1 and C. next time

