Max Flow, Min Cut
COS b21

Kevin Wayne
Fall 2005

Soviet Rail Network, 1955

o
PO~

N R TIL g) s

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002

Minimum Cut Problem

Flow network.

« Digraph G = (V, E), nonnegative edge capacities c(e).

= Two distinguished nodes: s = source, t = sink.

. Assumptions: no parallel edges, no edges entering s or leaving t.
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Cuts

Def. Ans-t cut is a partition (A, B) of Vwiths€ Aand t € B.

Def. The capacity of a cut (A, B)is: cap(4,B) = 3 c(e)
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Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.
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Capacity =10 + 8 + 10 = 28

Flows

Def. Ans-t flow is a function that satisfies:

« Foreache€eE: 0 = f(e) = cle) (capacity)
. ForeachveV-{s,t}: 3Sf = Yfl (conservation)
eintov eoutof v

Def. The value of a flow fis: val(f) = 3 f(e) .
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Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.
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Flows and Cuts
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

Sfle) - Tfle) = val(f)
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Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

3 flo- 3 fle)=val(f).
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Pf. val(f)
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by flow conservation, all terms ~ —» S| Zfle- 3 fle
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Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the
value of the flow is at most the capacity of the cut.

Cut capacity = 30 = Flow value < 30
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Flows and Cuts

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have
val(f) = cap(A, B).

Pf. vl(f) = 3 f@- 3 f@
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Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.
If val(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity =28 = Flow value < 28
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Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = O for all edge e € E.
« Find an s-t path P where each edge has f(e) < c(e).
= Augment flow along path P.
« Repeat until you get stuck.
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Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = O for all edge e € E.
« Find an s-t path P where each edge has f(e) < c(e).
= Augment flow along path P.
« Repeat until you get stuck.
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Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = O for all edge e € E.
« Find an s-t path P where each edge has f(e) < c(e).
= Augment flow along path P.
« Repeat until you get stuck.
N locally optimality # global optimality
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greedy = 20

opt = 30

Residual Graph

Original edge: e = (u,v) €E. % capacity

= Flow f(e), capacity c(e). Q 17 @
6
S flow

Residual edge.

= "Undo" flow sent.

. e=(u,v)and eR = (v, u).
- Residual capacity:

residual capacity

O

¢ (0 ={c(e)—f(e) ifeck ™ residual capacity
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Residual graph: 6; = (V, E;).
= Residual edges with positive residual capacity.
. Ef={e:f(e)<c(e)} U {eR:f(e)>0}




Ford-Fulkerson Algorithm
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Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]
The value of the max flow is equal to the value of the min cut.

Pf. Let f be a flow. Then TFAE:
(i) There exists a cut (A, B) such that val(f) = cap(A, B).
(ii)  Flow f is a max flow.
(iii)  There is no augmenting path relative to f.

(i) = (ii) This was the corollary to weak duality lemma.
(ii) = (iii) We show contrapositive.

« Let f be a flow. If there exists an augmenting path, then we can
improve f by sending flow along path.

Proof of Max-Flow Min-Cut Theorem

(i) = (i)
« Let f be a flow with no augmenting paths.

. Let A be set of vertices reachable from s in residual graph.
« By definition of A, s € A.

« By definition of f,+ & A.

val(f) = 3 flo- 3 f(o)
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Analysis

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacities c; (e)
remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most val(f*) < nC iterations.
It can be implemented in O(mnC) time.
Pf. Each augmentation increase value by at least 1. =

Integrality theorem. If all capacities are integers, then there exists a
max flow f for which every flow value f(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant. =




Ford-Fulkerson: An Exponential Input

Q. Isgeneric Ford-Fulkerson algorithm polynomial in input size?
X

m, n, and log C
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Ford-Fulkerson: A Pathological Input

Q. Is Ford-Fulkerson algorithm finite?

Letr=
Max flow =1+ r +r2,
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Augmentations: first augment 1 unit, then repeatedly choose
path with lowest capacity.

Choosing Good Augmenting Paths

Goal: choose augmenting paths so that:
= Can find augmenting paths efficiently.
« Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
= Max bottleneck capacity.

. Sufficiently large bottleneck capacity.

« Fewest number of edges.

Shortest Augmenting Path: Overview of Analysis

L1. The length of the shortest augmenting path never decreases.

L2. After at most m augmentations, the length of the shortest
augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm performs at most
O(mn) augmentations. It can be implemented in O(m?n) time.

= O(m) time to find shortest augmenting path via BFS.

= O(m) augmentations for paths of exactly k edges. =

k<n




Shortest Augmenting Path: Analysis

number of edges

Level graph.
= Define ¢(v) = length of shortest s-v path in 6.

« Lg = (V, F)is subgraph of & that contains only those edges (u,v) EE
with ¢(v) = ¢(u) + 1.

= Compute L in O(m+n) time using BFS, deleting back and side edges.

« Pisashortest s-u path in G iff it is an s-u path L.
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Shortest Augmenting Path: Analysis

L2. After at most m augmentations, the length of the shortest

augmenting path strictly increases.
= At least one edge (the bottleneck edge) is deleted from L after

each augmentation.
« No new edges added to L until length of shortest path strictly

increases.

Shortest Augmenting Path: Analysis

L1. The length of the shortest augmenting path never decreases.
. Let f and f' be flow before and after a shortest path augmentation.
» LetLand L' be level graphs of 6; and G, -
= Only back edges added to G -
« Path with back edge has length greater than previous length.

Shortest Augmenting Path: Review of Analysis

L1. The length of the shortest augmenting path never decreases.

L2. After at most m augmentations, the length of the shortest
augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm performs at most
O(mn) augmentations. It can be implemented in O(m?n) time.

Note: ©(mn) augmentations necessary on some networks.

= Try to decrease time per augmentation instead.

= Dynamic trees = O(mnlogn) [Sleator-Tarjan, 1983]
. Simpleidea = O(mn?)




Shortest Augmenting Path: Improved Version

Two types of augmentations.
= Normal augmentation: length of shortest path doesn't change.
= Special augmentation: length of shortest path strictly increases.

L3. Group of normal augmentations takes O(mn) time.
= Explicitly maintain level graph - it changes by at most 2n edges
after each normal augmentation.
. Start at s, advance along an edge in L until reach t or get stuck.
- if reach t, augment and delete at least one edge
- if get stuck, delete node

Shortest Augmenting Path: Improved Version
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Shortest Augmenting Path: Improved Version

augment

bottleneck edge

Stop: length of shortest path must have strictly increased.

Shortest Augmenting Path: Improved Version

Two types of augmentations.
= Normal augmentation: length of shortest path doesn't change.
= Special augmentation: length of shortest path strictly increases.

L3. Group of normal augmentations takes O(mn) time.
= At most n advance steps before you either
- get stuck: delete a node from level graph
- reach t: augment and delete an edge from level graph

Theorem. Algorithm runs in O(mn2) time.
» O(mn) time between special augmentations.
« At most n special augmentations.




History of Worst-Case Running Times

1951
1955
1970
1970
1970
1972
1973
1974
1983
1986

1997

Dantzig Simplex mn2Ct
Ford, Fulkerson Augmenting path _
Edmonds-Karp Shortest path _
Edmonds-Karp Fattest path m log C (m log n)
Dinitz Improved shortest path _
Edmonds-Karp, Dinitz Capacity scaling m?log Ct
Dinitz-Gabow Improved capacity scaling mnlog C*t
Karzanov Preflow-push nd
Sleator-Tarjan Dynamic trees mnlogn
Goldberg-Tarjan FIFO preflow-push mn log (n?/ m)

6Goldberg-Rao Length function
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T Edge capacities are between 1 and C. next time




