
1

1

Max Flow, Min Cut
 COS 521

Kevin Wayne
Fall 2005

2

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

3

Flow network.
 Digraph G = (V, E), nonnegative edge capacities c(e).
 Two distinguished nodes: s = source, t = sink.
 Assumptions: no parallel edges, no edges entering s or leaving t.

Minimum Cut Problem

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4
capacity

source sink

4

Cuts

Def. An s-t cut is a partition (A, B) of V with s ∈ A and t ∈ B.

Def. The capacity of a cut (A, B) is:

!

cap(A, B) = c(e)
e out of A

"

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4
 A

 Capacity = 10 + 8 + 10 = 28

2

5

Min s-t cut problem. Find an s-t cut of minimum capacity.

Minimum Cut Problem

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

 Capacity = 10 + 8 + 10 = 28

 A

6

Def. An s-t flow is a function that satisfies:
 For each e ∈ E: (capacity)
 For each v ∈ V – {s, t}: (conservation)

Def. The value of a flow f is:

Flows

!

f (e)
e in to v

" = f (e)
e out of v

"

!

0 " f (e) " c(e)

!

val(f) = f (e)
e out of s

" .

10

9

9

14

4 10

4 8 9

1

0 0

0

14

capacity
flow

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

Value = 28

7

Max flow problem. Find s-t flow of maximum value.

Maximum Flow Problem

10

9

9

14

4 10

4 8 9

1

0 0

0

14

capacity
flow

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

Value = 28

8

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

11

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

!

f (e)
e out of A

" # f (e)
e in to A

" = val(f)

 Value = 10 - 4 + 8 - 0 + 10
 = 24

4

 A

3

9

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

Pf. !

f (e)
e out of A

" # f (e) = val(f)
e in to A

" .

!

val(f) = f (e)
e out of s

"

=
v #A

" f (e)
e out of v

" $ f (e)
e in to v

"
%

&
'

(

)
*

= f (e)
e out of A

" $ f (e).
e in to A

"

by flow conservation, all terms
except v = s are 0

10

Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the
value of the flow is at most the capacity of the cut.

Cut capacity = 30 ⇒ Flow value ≤ 30

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

Capacity = 30

 A

11

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have
val(f) ≤ cap(A, B).

Pf.

Flows and Cuts

!

val(f) = f (e)
e out of A

" # f (e)
e in to A

"

$ f (e)
e out of A

"

$ c(e)
e out of A

"

= cap(A, B)

12

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.
If val(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity = 28 ⇒ Flow value ≤ 28

10

9

9

14

4 10

4 8 9

1

0 0

0

14

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0
 A

4

13

Towards a Max Flow Algorithm

Greedy algorithm.
 Start with f(e) = 0 for all edge e ∈ E.
 Find an s-t path P where each edge has f(e) < c(e).
 Augment flow along path P.
 Repeat until you get stuck.

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Flow value = 0

14

Towards a Max Flow Algorithm

Greedy algorithm.
 Start with f(e) = 0 for all edge e ∈ E.
 Find an s-t path P where each edge has f(e) < c(e).
 Augment flow along path P.
 Repeat until you get stuck.

s

1

2

t

20

Flow value = 20

10

10 20

30

0 0

0 0

0

X

X

X

20

20

20

15

Towards a Max Flow Algorithm

Greedy algorithm.
 Start with f(e) = 0 for all edge e ∈ E.
 Find an s-t path P where each edge has f(e) < c(e).
 Augment flow along path P.
 Repeat until you get stuck.

greedy = 20

s

1

2

t

20 10

10 20

30

20 0

0

20

20

opt = 30

s

1

2

t

20 10

10 20

30

20 10

10

10

20

locally optimality ⇒ global optimality

16

Residual Graph

Original edge: e = (u, v) ∈ E.
 Flow f(e), capacity c(e).

Residual edge.
 "Undo" flow sent.
 e = (u, v) and eR = (v, u).
 Residual capacity:

Residual graph: Gf = (V, Ef).
 Residual edges with positive residual capacity.
 Ef = {e : f(e) < c(e)} ∪ {eR : f(e) > 0}.

u v 17

6

capacity

u v 11

residual capacity

 6
residual capacity

flow

!

c f (e) =
c(e) " f (e) if e # E

f (e
R
) if e

R # E

$
%
&

5

17

Ford-Fulkerson Algorithm

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2

 G:
capacity

18

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]

The value of the max flow is equal to the value of the min cut.

Pf. Let f be a flow. Then TFAE:
 (i) There exists a cut (A, B) such that val(f) = cap(A, B).
 (ii) Flow f is a max flow.
 (iii) There is no augmenting path relative to f.

(i) ⇒ (ii) This was the corollary to weak duality lemma.

(ii) ⇒ (iii) We show contrapositive.
 Let f be a flow. If there exists an augmenting path, then we can

improve f by sending flow along path.

19

Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i)
 Let f be a flow with no augmenting paths.
 Let A be set of vertices reachable from s in residual graph.
 By definition of A, s ∈ A.
 By definition of f, t ∉ A.

!

val(f) = f (e)
e out of A

" # f (e)
e in to A

"

= c(e)
e out of A

"

= cap(A, B)

original network

s

t

A B

20

Analysis

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacities cf (e)
remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most val(f*) ≤ nC iterations.
It can be implemented in O(mnC) time.
Pf. Each augmentation increase value by at least 1. ▪

Integrality theorem. If all capacities are integers, then there exists a
max flow f for which every flow value f(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant. ▪

6

21

Ford-Fulkerson: An Exponential Input

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

s

1

2

t

C

C

0 0

0 0

0

C

C

1 s

1

2

t

C

C

1

0 0

0 0

0X 1

C

C

X

X

X

1

1

1

X

X

1

1X

X

X

1

0

1

m, n, and log C

G G

22

Ford-Fulkerson: A Pathological Input

Q. Is Ford-Fulkerson algorithm finite?

Let r = [rn+2 = rn - rn+1]
Max flow = 1 + r + r2.

Augmentations: first augment 1 unit, then repeatedly choose
path with lowest capacity.

s

a

c

tb

a

c

b

r2

1

r

!

"1 + 5

2
 # 0.618...

23

Choosing Good Augmenting Paths

Goal: choose augmenting paths so that:
 Can find augmenting paths efficiently.
 Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
 Max bottleneck capacity.
 Sufficiently large bottleneck capacity.
 Fewest number of edges.

24

Shortest Augmenting Path: Overview of Analysis

L1. The length of the shortest augmenting path never decreases.

L2. After at most m augmentations, the length of the shortest
augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm performs at most
O(mn) augmentations. It can be implemented in O(m2n) time.
 O(m) time to find shortest augmenting path via BFS.
 O(m) augmentations for paths of exactly k edges. ▪

k < n

7

25

Shortest Augmenting Path: Analysis

Level graph.
 Define l (v) = length of shortest s-v path in G.
 LG = (V, F) is subgraph of G that contains only those edges (u, v) ∈ E

with l (v) = l (u) + 1.
 Compute LG in O(m+n) time using BFS, deleting back and side edges.
 P is a shortest s-u path in G iff it is an s-u path LG.

s

2

3

5

6 t

l = 0 l = 1 l = 2 l = 3

 LG

number of edges

26

Shortest Augmenting Path: Analysis

L1. The length of the shortest augmenting path never decreases.
 Let f and f' be flow before and after a shortest path augmentation.
 Let L and L' be level graphs of Gf and Gf '
 Only back edges added to Gf '
 Path with back edge has length greater than previous length.

s

2

3

5

6 t

l = 0 l = 1 l = 2 l = 3

s

2

3

5

6 t

 L

 L'

27

Shortest Augmenting Path: Analysis

L2. After at most m augmentations, the length of the shortest
augmenting path strictly increases.
 At least one edge (the bottleneck edge) is deleted from L after

each augmentation.
 No new edges added to L until length of shortest path strictly

increases.

s

2

3

5

6 t

l = 0 l = 1 l = 2 l = 3

s

2

3

5

6 t

 L

 L'

28

Shortest Augmenting Path: Review of Analysis

L1. The length of the shortest augmenting path never decreases.

L2. After at most m augmentations, the length of the shortest
augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm performs at most
O(mn) augmentations. It can be implemented in O(m2n) time.

Note: Θ(mn) augmentations necessary on some networks.
 Try to decrease time per augmentation instead.
 Dynamic trees ⇒ O(mn log n) [Sleator-Tarjan, 1983]
 Simple idea ⇒ O(mn2)

8

29

Shortest Augmenting Path: Improved Version

Two types of augmentations.
 Normal augmentation: length of shortest path doesn't change.
 Special augmentation: length of shortest path strictly increases.

L3. Group of normal augmentations takes O(mn) time.
 Explicitly maintain level graph - it changes by at most 2n edges

after each normal augmentation.
 Start at s, advance along an edge in L until reach t or get stuck.

– if reach t, augment and delete at least one edge
– if get stuck, delete node

s

2

3

5

6 t

l = 0 l = 1 l = 2 l = 3

 L

30

Shortest Augmenting Path: Improved Version

s

2

3

5

6 t

 L

s

2

3

5

6 t

 L

s

2 5

6 t

 L

augment

augment

delete 3

bottleneck edge

got stuck,
delete node

bottleneck edge

31

Shortest Augmenting Path: Improved Version

s

2 5

6 t

 L

s

2 5

6 t

 L

Stop: length of shortest path must have strictly increased.

bottleneck edge

augment

32

Shortest Augmenting Path: Improved Version

Two types of augmentations.
 Normal augmentation: length of shortest path doesn't change.
 Special augmentation: length of shortest path strictly increases.

L3. Group of normal augmentations takes O(mn) time.
 At most n advance steps before you either

– get stuck: delete a node from level graph
– reach t: augment and delete an edge from level graph

Theorem. Algorithm runs in O(mn2) time.
 O(mn) time between special augmentations.
 At most n special augmentations.

9

33

History of Worst-Case Running Times

Dantzig

Discoverer

Simplex

Method Asymptotic Time

m n2 C †1951

Year

Ford, Fulkerson Augmenting path m n C †1955

Edmonds-Karp Shortest path m2 n1970

Dinitz Improved shortest path m n21970

Edmonds-Karp, Dinitz Capacity scaling m2 log C †1972

Dinitz-Gabow Improved capacity scaling m n log C †1973

Karzanov Preflow-push n31974

Sleator-Tarjan Dynamic trees m n log n1983

Goldberg-Tarjan FIFO preflow-push m n log (n2 / m)1986

.

Goldberg-Rao Length function m3/2 log (n2 / m) log C †
mn2/3 log (n2 / m) log C †1997

Edmonds-Karp Fattest path m log C (m log n) †1970

† Edge capacities are between 1 and C. next time

