1. Show that \(EQ_{CFG} \) is co-Turing-recognizable. (Look at the definition of \(EQ_{CFG} \) in the book.)

2. If \(A \preceq_m B \) and \(B \) is a regular language, does that imply that \(A \) is a regular language? Why or why not?

3. Let \(\Gamma = \{a, 1, \sqcup\} \) be the tape alphabet for all TMs in this problem. Define the busy beaver function \(BB : \mathbb{N} \to \mathbb{N} \) as follows. For each value of \(k \), consider all \(k \)-state TMs that halt when started with a blank tape. Let \(BB(k) \) be the maximum number of 1s that remain on the tape among all of these machines. Show that \(BB \) is not a computable function.

4. Let

\[
 f(x) = \begin{cases}
 3x + 1 & \text{for odd } x \\
 x/2 & \text{for even } x
\end{cases}
\]

for any natural number \(x \). If you start with an integer \(x \) and iterate \(f \), you obtain a sequence, \(x, f(x), f(f(x)), \ldots \). Stop if you ever hit 1. For example, if \(x = 17 \), you get the sequence 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1. Extensive computer tests have shown that every starting point between 1 and a large positive integer gives a sequence that ends in 1. But, the question of whether all positive starting points end up at 1 is unsolved; it is called the \(3x + 1 \) problem. Suppose that \(A_{TM} \) were decidable by a TM \(H \). Use \(H \) to describe a TM that is guaranteed to state the answer to the \(3x + 1 \) problem.

5. Let \(S = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \{\langle M\rangle\}\} \). Show that neither \(S \) nor \(\bar{S} \) is Turing-recognizable.

6. (Optional) Prove that there exist two languages \(A \) and \(B \) that are Turing-incomparable, i.e. where \(A \nless_T B \) and \(B \nless_T A \).