Fall 2006

Assignment #3

Due: Thursday October 12

Sean Hallgren

- 1. Let $A/B = \{w \mid wx \in A \text{ for some } x \in B\}$. Show that, if A is context free and B is regular, then A/B is context free.
- 2. For any language A, let $SUFFIX(A) = \{v \mid uv \in A \text{ for some string } u\}$. Show that the class of context-free languages is closed under the SUFFIX operation.
- 3. Show that, if G is a CFG in Chomsky normal form, then for any string $w \in L(G)$ of length n > 1, exactly 2n 1 steps are required for any derivation of w.
- 4. Let $G = (V, \Sigma, R, \langle \mathbf{STMT} \rangle)$ be the following grammar.

 $\Sigma = \{ if, condition, then, else, a := 1 \}$ $V = \{ \langle STMT \rangle, \langle ASSIGN \rangle, \langle IF - THEN \rangle, \langle IF - THEN - ELSE \rangle \}$

 ${\cal G}$ is a natural-looking grammar for a fragment of a programming language, but ${\cal G}$ is ambiguous.

- (a) Show that G is ambiguous.
- (b) Give a new unambiguous grammar for the same language.
- 5. Let B be the language of all palindromes over $\{0,1\}$ containing an equal number of 0s and 1s. Show that B is not context free.
- 6. (Optional) Let $C = \{x \# y \mid x, y \in \{0, 1\}^* \text{ and } x \neq y\}$. Show that C is a context-free language.