COS487 Theory of Computation

Fall 2006

Assignment #1

Due: Thursday September 28

Sean Hallgren

- 1. Each of the following languages is the complement of a simpler language. In each part, construct a DFA for the simpler language, then use it to give the state diagram of a DFA for the language given. In all parts $\Sigma = \{a, b\}$.
 - (a) $\{w \mid w \text{ contains neither the substrings ab nor ba}\}$
 - (b) $\{w \mid w \text{ is any string not in } a^*b^*\}$
- 2. Give state diagrams of NFAs with the specified number of states recognizing each of the following languages. In all parts the alphabet is $\{0, 1\}$.
 - (a) The language $\{0\}$ with two states
 - (b) The language $0^*1^*0^+$ with three states
 - (c) The language $\{\epsilon\}$ with one state
- 3. Use the construction given in **Theorem 1.39** (in textbook) to convert the following nondeterministic finite automaton to an equivalent deterministic finite automaton.

- 4. For any string $w = w_1 w_2 \cdots w_n$, the reverse of w, written w^R , is the string w in reverse order, $w_n \cdots w_2 w_1$. For any language A, let $A^R = \{w^R \mid w \in A\}$. Show that if A is regular, so is A^R .
- 5. Let $\Sigma = \{0, 1\}$ and let

 $D = \{w \mid w \text{ contains an equal number of occurrences of the substrings 01 and 10}\}.$

Thus $101 \in D$ because 101 contains a single 01 and a single 10, but $1010 \notin D$ because 1010 contains two 10s and one 01. Show that D is a regular language.

6. (Optional) If A is any language, let $A_{\frac{1}{2}-}$ be the set of all first halves of strings in A so that

 $A_{\frac{1}{2}-} = \{x \mid \text{ for some } y, \ |x| = |y| \text{ and } xy \in A\}.$

Show that, if A is regular, then so is $A_{\frac{1}{2}}$.