MinML - a MiniMaL Functional Language

Robert Harper

1999 (extracted & edited by A. Appel, 2006)

Types. \(\tau := \text{int} | \text{bool} | \tau_1 \rightarrow \tau_2 \)

Expressions.

\(e := x | n | \text{true} | \text{false} | o(e_1, \ldots, e_n) | \text{if} e_1 \text{ then } e_2 \text{ else } e_3 | \text{fun} \ f (x: \tau_1) : \tau_2 \text{ is }\text{end} | \text{apply} (e_1, e_2) \)

Here \(x \) ranges over a countably infinite set of variables, \(n \) ranges over the integers, and \(o \) ranges over a set of primitive operations.

Free variables.

\[
\begin{align*}
\text{FV}(x) &= \{x\} \\
\text{FV}(n) &= \emptyset \\
\text{FV}(\text{true}) &= \emptyset \\
\text{FV}(\text{false}) &= \emptyset \\
\text{FV}(o(e_1, \ldots, e_n)) &= \text{FV}(e_1) \cup \cdots \cup \text{FV}(e_n) \\
\text{FV}(\text{if} e_1 \text{ then } e_2 \text{ else } e_3) &= \text{FV}(e) \cup \text{FV}(e_1) \cup \text{FV}(e_2) \\
\text{FV}(\text{fun} f (x: \tau_1) : \tau_2 \text{ is }\text{end}) &= \text{FV}(e) \setminus \{f, x\} \\
\text{FV}(\text{apply} (e_1, e_2)) &= \text{FV}(e_1) \cup \text{FV}(e_2)
\end{align*}
\]

We say that the variable \(x \) is free in the expression \(e \) iff \(x \in \text{FV}(e) \). An expression \(e \) is closed iff \(\text{FV}(e) = \emptyset \); that is, a closed expression has no free variables.

Capture-avoiding substitution. of an expression \(e \) for free occurrences of a variable \(x \) in another expression \(e' \), written \([e/x]e' \), is defined as follows:

\[
\begin{align*}
[e/x]x &= e \\
[e/x]n &= n \\
[e/x]\text{true} &= \text{true} \\
[e/x]\text{false} &= \text{false} \\
[e/x]o(e_1, \ldots, e_n) &= o([e/x]e_1, \ldots, [e/x]e_n) \\
[e/x]\text{if} e_1 \text{ then } e_2 \text{ else } e_3 &= \text{if} [e/x]e_1 \text{ then } [e/x]e_2 \text{ else } [e/x]e_3 \\
[e/x]\text{fun} f (y: \tau_1) : \tau_2 \text{ is }\text{end} &= \text{fun} f (y: \tau_1) : \tau_2 \text{ is }\text{end} \quad \text{if } f = x \text{ or } x = y \\
[e/x]\text{fun} f (y: \tau_1) : \tau_2 \text{ is }\text{end} &= \text{fun} f (y: \tau_1) : \tau_2 \text{ is }\text{end} \quad \text{if } \{f, y\} \cap (\text{FV}(e) \cup \{x\}) = \emptyset \\
[e/x]\text{apply} (e_1, e_2) &= \text{apply} ([e/x]e_1, [e/x]e_2)
\end{align*}
\]

Simultaneous capture-avoiding substitution, written \([e_1, \ldots, e_n/x_1, \ldots, x_n]e \), is defined in an analogous manner.

Capture-avoiding substitution is undefined if the condition in the penultimate equation is not met! In this case free occurrences of \(f \) or \(y \) in \(e \) would be captured by the binder for \(f \) and \(y \), thereby erroneously changing the meanings of the “pronouns”. This means, for example, that

\[
[x/y]\text{fun} f (x: \text{int}) : \text{int} \text{ is } \text{end}
\]

is undefined, rather than equal to

\[
\text{fun} f (x: \text{int}) : \text{int} \text{ is } \text{end},
\]

wherein capture of \(x \) has occurred.

The possibility of capture during substitution can always be avoided by renaming of bound variables.
Single-step evaluation.

This is really a rule schema; it specifies one rule for each primitive operation \(o \). For example, if \(o \) is the addition operation, then this rule would be written as \(m_1 + n_2 \mapsto n \) where \(n = m_1 + n_2 \). This is itself a rule schema, standing for the infinite collection of rules

\[
\begin{align*}
0 + 0 & \mapsto 0 \\
0 + 1 & \mapsto 1 \\
1 + 0 & \mapsto 1 \\
1 + 1 & \mapsto 2 \\
\end{align*}
\]

\[
\text{iftrue} \ e_1 \, \text{else} \ e_2 \, \text{fi} \mapsto e_1 \\
\text{iffalse} \ e_1 \, \text{else} \ e_2 \, \text{fi} \mapsto e_2
\]

\[
\text{CallFun} \quad (v = \text{fun} \ (x : \tau_1) : \tau_2 \, \text{is} \, \text{end} \, \Rightarrow \text{apply}(v, v_1) \mapsto [v, v_1/f, x]e)
\]

\[
\begin{align*}
\text{OpArg} & \quad e \mapsto e' \\
\text{IfTest} & \quad e \mapsto e' \\
\text{AppFun} & \quad \text{apply}(e_1, e_2) \mapsto \text{apply}(e'_1, e_2) \\
\text{AppArg} & \quad e_1 \mapsto e'_1 \\
\text{NumTyp} \quad e_2 \mapsto e'_2
\end{align*}
\]

Multistep evaluation.

\[
\text{e} \mapsto^* \text{e}' \\
\text{e}' \mapsto^* \text{e}''
\]

Environments. \(\Gamma[x : \tau] (y) = \begin{cases}
\tau & \text{if } y = x \\
\Gamma(y) & \text{otherwise}
\end{cases} \)

Typing judgment.

\[
\begin{align*}
\Gamma & = \tau & \text{VarTyp} \\
\Gamma & \vdash n : \text{int} & \text{NumTyp} \\
\Gamma & \vdash e_1 : \tau_1 \quad \ldots \quad \Gamma & \vdash e_n : \tau_n & \text{OpTyp} \\
\Gamma & \vdash o(e_1, \ldots, e_n) : \tau & \text{We state this typing rule for each primitive operation \(o \) taking \(n \) arguments of type \(\tau_1, \ldots, \tau_n \), respectively, and yielding a value of type \(\tau \).}
\Gamma & \vdash e : \text{bool} & \text{IfTyp} \\
\Gamma & \vdash e_1 : \tau & \Gamma & \vdash e_2 : \tau \\
\Gamma & \vdash \text{ifthen} e_1 \, \text{else} \, e_2 \, \text{fi} : \tau & \text{AppTyp}
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash \text{fun} \ (x : \tau_1) : \tau_2 \, \text{is} \, \text{end} : \tau_1 \rightarrow \tau_2 & \text{FunTyp} \\
\Gamma & \vdash \text{apply} (e_1, e_2) : \tau & \text{AppTyp}
\end{align*}
\]

Notation. When \(e \) is closed, we can write \(e : \tau \) instead of \(\emptyset \vdash e : \tau \).

Theorem: Inversion

1. If \(\Gamma \vdash x : \tau \), then \(\Gamma(x) = \tau \).
2. If \(\Gamma \vdash n : \tau \), then \(\tau = \text{int} \).
3. If \(\Gamma \vdash \text{true} : \tau \), then \(\tau = \text{bool} \), and similarly for \(\text{false} \).
4. If \(\Gamma \vdash \text{ifthen} e_1 \, \text{else} \, e_2 \, \text{fi} : \tau \), then \(\Gamma \vdash e : \text{bool} \) and \(\Gamma \vdash e_1 : \tau \) and \(\Gamma \vdash e_2 : \tau \).
5. If \(\Gamma \vdash \text{fun} \ (x : \tau_1) : \tau_2 \, \text{is} \, \text{end} : \tau_1 \rightarrow \tau_2 \), then \(\Gamma[f : \tau_1 \rightarrow \tau_2][x : \tau_1] \vdash e : \tau_2 \).
6. If \(\Gamma \vdash \text{apply} (e_1, e_2) : \tau \), then there exists \(\tau_2 \) such that \(\Gamma \vdash e_1 : \tau_2 \rightarrow \tau \) and \(\Gamma \vdash e_2 : \tau_2 \).

Proof. Each case is by induction on typing. In each case exactly one rule applies, from which the result is obvious. \(\blacksquare \)
Lemma: Environment extension. Typing is not affected by “junk” in the symbol table. If $\Gamma \vdash e : \tau$ and $\Gamma' \supseteq \Gamma$, then $\Gamma' \vdash e : \tau$.

Proof. By induction on the typing rules. For example, consider the typing rule for applications. Inductively we may assume that if $\Gamma' \supseteq \Gamma$, then $\Gamma' \vdash e_1 : \tau_2 \to \tau$ and if $\Gamma' \supseteq \Gamma$, then $\Gamma' \vdash e_2 : \tau_2$. Consequently, if $\Gamma' \supseteq \Gamma$, then $\Gamma' \vdash \text{apply} (e_1, e_2) : \tau$, as required. The other cases follow a similar pattern.

Lemma: Deterministic multistep evaluation. Theorem: Preservation. If $\Gamma \vdash e : \tau$, then $\Gamma \vdash e' : \tau$.

Proof. By induction on the typing rules. For example, consider the typing rule for applications. Inductively we may assume that if $\Gamma' \supseteq \Gamma$, then $\Gamma' \vdash e_1 : \tau_2 \to \tau$ and if $\Gamma' \supseteq \Gamma$, then $\Gamma' \vdash e_2 : \tau_2$. Consequently, if $\Gamma' \supseteq \Gamma$, then $\Gamma' \vdash \text{apply} (e_1, e_2) : \tau$, as required. The other cases follow a similar pattern.

Lemma: Typing after substitution. Substitution for a variable with type τ by an expression of the same type doesn’t affect typing. If $\Gamma \vdash e : \tau$, then $\Gamma \vdash [e/x]e' : \tau$.

Proof. By induction on the derivation of the typing $\Gamma \vdash e : \tau$. We will consider several rules to illustrate the idea.

FunTyp We have that e' is a variable, say y, and $\tau' = \Gamma[y]$. If $y \neq x$, then $[e/x]y = y$ and $\Gamma[y]$ is the same type, as required. If $y = x$, then $\tau' = \Gamma[y]$ is the same type, as required. By assumption $\Gamma \vdash e : \tau$, as required.

FunTyp We have that $e' = \text{fun} f (y: \tau_1) : \tau_2 \text{ is } e_2 \text{ end}$ and $\tau' = \tau_1 \to \tau_2$. We may assume that f and y are chosen so that $$\{f, y\} \cap (\text{FV} (e) \cup \{x\} \cup \text{dom} (\Gamma)) = \emptyset.$$ By definition of substitution, $[e/x]e' = \text{fun} f (y: \tau_1) : \tau_2 \text{ is } e_2 \text{ end}$. Applying the inductive hypothesis to the premise of the rule FunTyp, $\Gamma[y] [f : \tau_1 \to \tau_2] [y : \tau_1] \vdash e_2 : \tau_2$, it follows that $\Gamma[y] [f : \tau_1 \to \tau_2] [y : \tau_1] \vdash [e/x]e_2 : \tau_2$. Hence

$$\Gamma \vdash \text{fun} f (y: \tau_1) : \tau_2 \text{ is } e_2 \text{ end} : \tau_1 \to \tau_2,$$

as required. ■

Lemma: Deterministic single-step evaluation. For every closed expression e, there exists at most one e' such that $e \mapsto e'$. In other words, the relation \mapsto is a partial function.

Proof. By induction on the structure of e. We leave the proof as an exercise to the reader. Be sure to consider all rules that apply to a given expression e!

Lemma: Deterministic multistep evaluation. For every closed expression e, there exists at most one value v such that $e \mapsto v$.

Proof. Follows immediately from the preceding lemma, with the observation that there is no transition from a value.

Lemma: Renaming bound variables. If $e_1 \mapsto e_2$ and $e_1 \equiv e'_1$, then there exists e'_2 such that $e'_1 \mapsto e'_2$ and $e'_2 \equiv e_2$.

Proof. By induction on the rules defining one-step evaluation.

Theorem: Preservation. If $e : \tau$ and $e \mapsto e'$, then $e' : \tau$.

Proof. Note that we are proving not only that e' is well-typed, but that it has the same type as e. The proof is by induction on the rules defining one-step evaluation. We will consider each rule in turn.

OpVals Here $e = o(v_1, \ldots, v_n)$ and $e' = v$ is the result of executing operation o on arguments v_1, \ldots, v_n. By our assumptions about the primitive operations, if $e : \tau$, then $v : \tau$.

IfTrue Here $e = \text{if true then } e_1 \text{ else } e_2 \text{ fi}$ and $e' = e_1$. Since $e : \tau$, by inversion $e_1 : \tau$, as required.

IfFalse Here $e = \text{if false then } e_1 \text{ else } e_2 \text{ fi}$ and $e' = e_2$. Since $e : \tau$, by inversion $e_2 : \tau$, as required.

CallFun Here $e = \text{apply} (v_1, v_2)$, where $v_1 = \text{fun} f (x : \tau_2) : \tau_1 \text{ is } e_2 \text{ end}$, and $e' = [v_1, v_2 / f, x] e_2$. By inversion applied to e, we have $v_1 : \tau_2 \to \tau$ and $v_2 : \tau_2$. By inversion applied to v_1, we have $[f : \tau_2 \to \tau] [x : \tau_2] \vdash e_2 : \tau$. Therefore, by substitution we have $[v_1, v_2 / f, x] e_2 : \tau$, as required.

OpArg Here $e = o(v_1, \ldots, v_{i-1}, e_i, \ldots, e_n)$, $e' = o(v_1, \ldots, v_{i-1}, e_i', \ldots, e_n)$, and $e_i \mapsto e'_i$. Suppose that the ith argument of o is of type τ_i. By inversion, $v_1 : \tau_1, \ldots, v_{i-1} : \tau_{i-1}, e_i : \tau_i, \ldots, e_n : \tau_n$. By inductive hypothesis $e'_i : \tau_i$, and hence $e' : \tau$, as required.
IfTest Here \(e = if e_1 \text{then} e_2 \text{else} e_3 \) \(\text{fi} \) and \(e' = if e'_1 \text{then} e'_2 \text{else} e'_3 \) \(\text{fi} \). By inversion we have that \(e_1 : \text{bool} \), \(e_2 : \tau \) and \(e_3 : \tau \). By inductive hypothesis \(e'_1 : \text{bool} \), and hence \(e' : \tau \).

AppFun Here \(e = \text{apply} (e_1, e_2) \) and \(e' = \text{apply} (e'_1, e_2) \). By inversion \(e_1 : \tau_2 \rightarrow \tau \) and \(e_2 : \tau_2 \), for some type \(\tau_2 \). By induction \(e'_1 : \tau_2 \rightarrow \tau \), and hence \(e' : \tau \).

AppArg Here \(e = \text{apply} (v_1, e_2) \) and \(e' = \text{apply} (v_1, e'_2) \). By inversion, \(v_1 : \tau_2 \rightarrow \tau \) and \(e_2 : \tau_2 \), for some type \(\tau_2 \). By induction \(e'_2 : \tau_2 \), and hence \(e' : \tau \).

Lemma: Canonical Forms. The type of a closed value "predicts" its form.
Suppose that \(v : \tau \) is a closed, well-formed value.

1. If \(\tau = \text{bool} \), then either \(v = \text{true} \) or \(v = \text{false} \).
2. If \(\tau = \text{int} \), then \(v = n \) for some \(n \).
3. If \(\tau = \tau_1 \rightarrow \tau_2 \), then \(v = \text{fun} f (x : \tau_1) : \tau_2 \text{is} e \text{end} \) for some \(f, x \), and \(e \).

Proof. By induction on the typing rules, using the fact that \(v \) is a value.

Theorem: Progress. If \(e : \tau \), then either \(e \) is a value, or there exists \(e' \) such that \(e \rightarrow e' \).

Proof. The proof is by induction on the typing rules.

VarTyp Cannot occur, since \(e \) is closed.

NumTyp, TrueTyp, FalseTyp, FunTyp In each case \(e \) is a value, which completes the proof.

OpTyp Here \(e = o (e_1, \ldots, e_n) \) and \(e_i : \tau_i \) for each \(1 \leq i \leq n \), where the primitive operation \(o \) takes arguments of types \(\tau_1, \ldots, \tau_n \), and yields values of type \(\tau \). By inductive hypothesis we have for each \(1 \leq i \leq n \), either \(e_i \) is a value, or there exists \(e'_i \) such that \(e_i \rightarrow e'_i \). If all arguments are values, then by the assumption that the primitive operations are total, there exists \(v \) such that \(e \rightarrow v \). Otherwise, supposed that \(e_1, \ldots, e_{i-1} \) are all values, and that \(e_i \) is not a value. Then by the \(i \)th inductive hypothesis there exists \(e'_i \) such that \(e_i \rightarrow e'_i \). But then \(e \rightarrow e' \), where \(e' = o (e_1, \ldots, e_{i-1}, e'_i, \ldots, e_n) \), by rule OpArg.

IfTyp Here \(e = if e_1 \text{then} e_2 \text{else} e_3 \text{fi} \), with \(e_1 : \text{bool} \), \(e_2 : \tau \), and \(e_3 : \tau \). By the first inductive hypothesis, either \(e_1 \) is a value, or there exists \(e'_1 \) such that \(e_1 \rightarrow e'_1 \). If \(e_1 \) is a value, then we have by the Canonical Forms Lemma, either \(e_1 = \text{true} \) or \(e_1 = \text{false} \). In the former case \(e \rightarrow e_2 \), and in the latter \(e \rightarrow e_3 \), as required. If \(e_1 \) is not a value, then \(e \rightarrow e' \), where \(e' = if e'_1 \text{then} e_2 \text{else} e_3 \text{fi} \), by rule IfTest.

AppTyp Here \(e = \text{apply} (e_1, e_2) \), with \(e_1 : \tau_2 \rightarrow \tau \) and \(e_2 : \tau_2 \). By the first inductive hypothesis, either \(e_1 \) is a value, or there exists \(e'_1 \) such that \(e_1 \rightarrow e'_1 \). If \(e_1 \) is not a value, then \(e \rightarrow e'_1 \), by rule AppFun, as required. By the second inductive hypothesis, either \(e_2 \) is a value, or there exists \(e'_2 \) such that \(e_2 \rightarrow e'_2 \). If \(e_2 \) is not a value, then \(e \rightarrow e' \), where \(e' = \text{apply} (e_1, e'_2) \), as required. Finally, if both \(e_1 \) and \(e_2 \) are values, then by the Canonical Forms Lemma, \(e_1 = \text{fun} f (x : \tau_2) : \tau \text{is} e'' \text{end} \), and \(e \rightarrow e' \), where \(e' = [e_1, e_2 / f, x] e'' \), by rule CallFun.

Theorem: Type safety. If \(e : \tau \) and \(e \rightarrow e' \) then either \(e' \) is a value or there exists \(e'' \) such that \(e' \rightarrow e'' \).

Proof. By progress and preservation.