
1

1

COS 425:
Database and Information

Management Systems

Transactions
and

Concurrency Control

2

Transactions

• Unit of update/change
– Viewed as indivisible
– Database can be inconsistent during

transaction
• Add to relations with mutual foreign keys
• Constraints on values

– Debit of bank savings + credit of bank checking

– Commit transaction/ Abort transaction
• Aborts by User
• Aborts by Error

2

3

Concurrency
• Must be able to execute multiple transactions on

DB together
– Multiple users

• Reservations, billing, banking, …
– Long transactions

• Reports, analysis, …

• Interleave transactions
• Each committed transaction must leave DB in

consistent state
• Each aborted transaction must leave DB in state

as if it never happened

4

Modeling transactions

• Only reads and writes to DB tables relevant
• Consider actions READ, WRITE, COMMIT, ABORT

• How interleave these actions correctly?
– Actions of different transactions can interact

• Around these actions a transaction does
local computation: not affect DB

• Next time: crash recovery
– make sure DB in consistent state w.r.t

transactions after crash

3

5

Example
Transaction T1: debit savings; credit checking
Transaction T2: get savings bal.; get checking bal.

T1: debit savings credit cking
T2: bal chking? Bal savings?

time

Transaction T1: debit savings; credit checking
Transaction T3: get savings bal.; get checking bal.

T1: debit savings credit cking
T2: bal saving? Bal chking?

time

BAD

GOOD

6

Read/Write diagrams

T1: R(V) W(V) R(K)W(K) C
T2: R(K) R(V) C X
T3: R(V) R(K) C √
T4: R(K)R(V)C X

R(object): read the DB object
W(object): write the DB object
C: transaction commits
V represents savings account
K represents checking account

time

4

7

Equivalence of schedules
Two schedule are equivalent if:

For any starting state of the DB for both
schedules

The effect of executing the 1st schedule is
identical to the effect of executing the 2nd

schedule

Effect refers to the state of the DB as well as
other results (e.g. a nasty letter that you
are overdrawn)

8

Serializability
• Serial schedule: schedule for a set of

transactions that does not interleave
actions of different transactions

• A schedule is serializable if it is
equivalent to some serial schedule for
the same set of transactions

5

9

Conflict Serializable
• Conflicting actions by different transactions

– Read and write to same DB object
– Two writes to the same DB object

• Only non-conflicting actions
– Two reads to the same DB object

A schedule is conflict serializable if the non-
conflicting actions of the schedule can be
reordered to get a serial schedule
– Strong condition!

10

Our Examples

T1: R(V) W(V) R(K)W(K) C
T2: R(K) R(V) C

T3: R(V) R(K) C

time

? ?

? ?

6

11

Our Examples

T1: R(V) W(V) R(K)W(K) C
T2: R(K) R(V) C X

T3: R(V) R(K) C √

time

12

Precedence Graph
• Each node represents a transaction Ti

• Edge from Ti to Tj if some action of Ti precedes
and conflicts with an action of Tj

THEOREM: A schedule is conflict serializable if
and only if the precedence graph for the
schedule is acyclic

T1

T3

T1

T2

Example 1 Example 2

T1:W(V), T2:R(V)

T2:R(K), T1:W(K)

T1:W(V), T3:R(V)
T1:W(V), T3:R(V)

7

13

Locking
• Locks maintained by transaction manager
• Transaction requests lock
• Manager grants/denies lock
• Lock types:

– Shared: need to have before read object
– Exclusive: need to have before write object

• Object locked?
– Different levels granularity

• Tables and indexes
• expense

14

Locking protocols
• Strict 2-phase locking:

– Transaction requests lock at any time before action
– Transaction releases locks when commits

• 2-phase locking (not strict)
– Transaction requests lock at any time before action
– Transaction releases locks at any time, BUT cannot

request additional locks once released any lock
• Can release before commit but must have all locks ever need

when release 1st

• Strict 2-phase locking satisfies 2-phase locking
constraints

8

15

Theorem

• 2 phase locking (2PL) allows only
schedule with acyclic precedents graph

=>
• 2 phase locking allows only conflict

serializable schedules

• Corollary: Strict 2-phase locking allows only
conflict serializable schedules

