cos 425:
Database and Information
Management Systems
Relational model:
Relational calculus

Tuple Relational Calculus

\qquad
Queries are formulae, which define sets using: \qquad

1. Constants
2. Predicates (like select of algebra)
3. Boolean and, or, not \qquad
4. \exists there exists
5. \forall for all

- Variables range over tuples

Attributes of a tuple T can be referred to in predicates using T.attribute name

Example: $\{T \mid T \varepsilon t p$ and $T . r a n k>100\}$
L__formula, T free___
tp: (name, rank); base relation of database

Formula defines relation

- Free variables in a formula take on the values of \qquad tuples
- A tuple is in the defined relation if and only if \qquad when substituted for a free variable, it satisfies (makes true) the formula \qquad
Free variable:
$\exists x, \forall x$ bind x - truth or falsehood no longer depends on a specific value of x
If x is not bound it is free
\qquad
\qquad

Quantifiers

There exists: $\quad \exists x(f(x))$ for formula f with free \qquad variable x

- Is true if there is some tuple which when substituted \qquad for x makes f true

For all: $\forall x(f(x))$ for formula f with free variable x

- Is true if any tuple substituted for x makes f true i.e. all tuples when substituted for x make f true

Example

\qquad
$\{T \mid \exists \mathrm{A} \exists \mathrm{B}(\mathrm{A} \varepsilon t p$ and $\mathrm{B} \varepsilon t p$ and
A.name $=$ T.name and A.rank $=$ T.rank and B.rank
$=$ T.rank and T.name2= B.name) \}

- T not constrained to be element of a named relation
- T has attributes defined by naming them in the formula: T.name, T.rank, T.name2
- so schema for T is (name, rank, name2) unordered
- Tuples T in result have values for (name, rank, name2) that satisfy the formula
- What is the resulting relation?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Formal definition: formula

- A tuple relational calculus formula is
- An atomic formula (uses predicate and constants): \qquad
- T \& R where
-T is a variable ranging over tuples
- R is a named relation in the database - a base relation
- T.a op W.b where
- a and b are names of attributes of T and W , respectively,
- op is one of $<>=\neq \leq \geq$
- T.a op constant \qquad
- constant op T.a

Formal definition: formula cont.

- A tuple relational calculus formula is \qquad
- An atomic formula
- For any tuple relational calculus formulae f and g
- not(f) \qquad
- fand g

Boolean operations

- f or g
-
- $\exists \mathrm{T}(\mathrm{f}(\mathrm{T}) \mathrm{)}$ for T free in f
- $\forall \mathrm{T}(\mathrm{f}(\mathrm{T}) \mathrm{)}$ for T free in f
\qquad
\qquad
\qquad

Formal definition: query

A query in the relational calculus is a set definition \qquad
$\{T \mid f(T)\}$
where f is a relational calculus formula \qquad T is the only variable free in f

The query defines the relation consisting of tuples T that satisfy f

The attributes of T are either defined by name in f or inherited from base relation R by a predicate $\mathrm{T} \varepsilon \mathrm{R}$

Some abbreviations for logic

- $(p=>q)$ equivalent to $((\operatorname{not} p)$ or $q)$ \qquad
- $\forall x(f(x))$ equiv. to $\operatorname{not}(\exists x(\operatorname{not} f(x)))$
- $\exists x(f(x))$ equiv. to $\operatorname{not}(\forall x(\operatorname{not} f(x)))$
- $\forall \mathrm{X} \varepsilon \mathrm{S}$ (f) equiv. to $\forall \mathrm{x}((\mathrm{x} \varepsilon \mathrm{S})=>\mathrm{f})$ \qquad
- $\exists x \in S$ (f) equiv. to $\exists x((x \varepsilon S)$ and $f)$

Board examples

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Board example 3 revisited: Recall for this example we working with relations Acct: (bname, acct\#, bal) Branch: (bname, bcity, assets) Owner: (name, acct\#) where "name" is name of customer owning acct\#
\qquad

Want to express in tuple relational calculus
"names of all customers who have accounts at all branches in Princeton" \qquad

Solution worked up on board (just reordered sequence of ands): $\{T \mid \exists O \forall B)(B \varepsilon$ Branch and B.bcity = 'Princeton') => \qquad
$\exists \mathrm{A}(\mathrm{A} \varepsilon \mathrm{Acct}$ and $\mathrm{O} \varepsilon$ Owners and A.acct\# = O.acct\# and B.bname $=$ A.bname and T.name=O.name)) \}
says if "xxx" is an name in the result, some (xxx, nnn) ε Owner can be paired with (b1, Princeton, \$\$b1) ε Branch so is (b1, nnn, bal1) ε Acct and paired with (b2, Princeton, $\$ \$ \mathrm{~b} 2) \varepsilon$ Branch so is (b2, nnn, bal2) ε Acct

Is key of Acct => WRONG
CORRECT:
\{T | $\forall \mathrm{B}$ ヨО ((B \& Branch and B.city = ‘Princeton’) =>
$\exists A(A \varepsilon A c c t$ and $O \varepsilon$ Owners and A.acct\# = O.acct\# and
B.bname $=$ A.bname and T.name $=$ O.name)) \}

Evaluating query in calculus

Declarative - how build new relation $\{x \mid f(x)\}$?

- Go through each candidate tuple value for x
- Is $f(x)$ true when substitute candidate value for free variable x ? \qquad
- If yes, candidate tuple is in new relation
- If no, candiate tuple is out \qquad
What are candidates? \qquad
- Do we know domain of x ?
- Is domain finite?

Problem

- Consider $\{T \mid \operatorname{not}(T \varepsilon t p)\}$
- Wide open - what is schema for T ?
- Consider $\{T \mid \forall S((S \varepsilon t p)=>$
(not (T.name = S.name and
T.rank = S.rank))) \}
- Now T:(name, rank) but universe is infinite

Don't want to consider infinite set of values
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Constants of a database and query

\qquad
Want consider only finite set of values

- What are constants in database and query?

Define:

- Let I be an instance of a database
- A specific set of tuples (relation) for each base relational schema
- Let Q be a relational calculus query
- Domain (I, Q) is the set of all constants in Q or I

Safe query

- A query Q on a relational database with base schemas $\left\{R_{i}\right\}$ is safe if and only if for all instances I of $\left\{R_{i}\right\}$, any tuple in $Q(I)$ - the relation resulting from applying Q to I - contains \qquad only values in Domain(I, Q)
- Means at worst candidates are all tuples can form from finite set of values in Domain(I, Q)

Text goes further

- Requires testing quantifiers has finite universe:
- For each $\exists \mathrm{T}(\mathrm{p}(\mathrm{T}))$ in the formula of Q , if $\mathrm{p}(t)$ \qquad is true for tuple t, then attributes of t are in Domain(I, Q)
- For each $\forall \mathrm{T}(\mathrm{p}(\mathrm{T}))$ in the formula of Q , if t is a tuple containing a constant not in Domain($\mathrm{I}, \mathrm{Q})$, then $\mathrm{p}(t)$ is true \qquad
=> Only need to test tuples in Domain(I,Q) \qquad
\qquad

The relational algebra and the tuple relational calculus \qquad over safe queries
are equivalent in expressiveness

Domain relational calculus

- Similar but variables range over domain \qquad values (i.e. attributes) not tuples
- Is equivalent to tuple relational calculus
\qquad
\qquad
- Example:
$\{<\mathrm{N}, \mathrm{K}, \mathrm{M}>\mid(\mathrm{N}, \mathrm{K}) \varepsilon t p$ and $(\mathrm{M}, \mathrm{K}) \varepsilon t p\}$ \qquad
\qquad
\qquad

Summary

- The relational calculus provides an alternate way to express queries
- A formal model based on logical formulae and set theory
- Equivalence with algebra means can use either or both - but only one for formal proofs
- Next we will see that SQL borrows from both

