
1

COS 425:
Database and Information

Management Systems

Relational model:
Relational calculus

Tuple Relational Calculus
Queries are formulae, which define sets using:
1. Constants
2. Predicates (like select of algebra)
3. Boolean and, or, not
4. there exists
5. for all

• Variables range over tuples
• Attributes of a tuple T can be referred to in predicates using

T.attribute_name

Example: { T | T ε tp and T.rank > 100 }
|__formula, T free ______|

tp: (name, rank); base relation of database

E
A

Formula defines relation

• Free variables in a formula take on the values of
tuples

• A tuple is in the defined relation if and only if
when substituted for a free variable, it satisfies
(makes true) the formula

Free variable:
x, x bind x – truth or falsehood no longer

depends on a specific value of x
If x is not bound it is free

E A

2

Quantifiers

There exists: x (f(x)) for formula f with free
variable x
• Is true if there is some tuple which when substituted

for x makes f true

For all: x (f(x)) for formula f with free variable x
• Is true if any tuple substituted for x makes f true

i.e. all tuples when substituted for x make f true

E

A

Example
{T | A B (A ε tp and B ε tp and
A.name = T.name and A.rank = T.rank and B.rank

=T.rank and T.name2= B.name) }

• T not constrained to be element of a named relation
• T has attributes defined by naming them in the formula:

T.name, T.rank, T.name2
– so schema for T is (name, rank, name2) unordered

• Tuples T in result have values for (name, rank, name2) that
satisfy the formula

• What is the resulting relation?

E E

Formal definition: formula
• A tuple relational calculus formula is

– An atomic formula (uses predicate and constants):
• T ε R where

– T is a variable ranging over tuples
– R is a named relation in the database – a base relation

• T.a op W.b where
– a and b are names of attributes of T and W, respectively,
– op is one of < > = ≠ ≤ ≥

• T.a op constant
• constant op T.a

3

Formal definition: formula cont.

• A tuple relational calculus formula is
– An atomic formula
– For any tuple relational calculus formulae f

and g
• not(f)
• f and g
• f or g
• T(f (T)) for T free in f
• T(f (T)) for T free in f

Boolean operations

Quantified

E
A

Formal definition: query

A query in the relational calculus is a set definition
{T | f(T) }

where f is a relational calculus formula
T is the only variable free in f

The query defines the relation consisting of tuples T that
satisfy f

The attributes of T are either defined by name in f or
inherited from base relation R by a predicate Tε R

Some abbreviations for logic

• (p => q) equivalent to ((not p) or q)
• x(f(x)) equiv. to not(x(not f(x)))
• x(f(x)) equiv. to not(x(not f(x)))
• x ε S (f) equiv. to x ((x ε S) => f)
• x ε S (f) equiv. to x ((x ε S) and f)

AA
A

A

EE

E

E

4

Board examples

Board example 3 revisited: Recall for this example we working with relations
Acct: (bname, acct#, bal) Branch: (bname, bcity, assets)
Owner: (name, acct#) where “name” is name of customer owning acct#

Want to express in tuple relational calculus
“names of all customers who have accounts at all branches in Princeton”

Solution worked up on board (just reordered sequence of ands):
{T | O B ((B ε Branch and B.bcity = ‘Princeton’) =>

A (A ε Acct and O ε Owners and A.acct# = O.acct# and
B.bname = A.bname and T.name=O.name)) }

says if “xxx” is an name in the result, some (xxx, nnn) ε Owner can be
paired with (b1, Princeton, $$b1) ε Branch so is (b1, nnn, bal1) ε Acct and
paired with (b2, Princeton, $$b2) ε Branch so is (b2, nnn, bal2) ε Acct

CORRECT:
{T | B O ((B ε Branch and B.city = ‘Princeton’) =>

A (A ε Acct and O ε Owners and A.acct# = O.acct# and
B.bname = A.bname and T.name=O.name)) }

E
E

E
E

A

A

Is key of Acct => WRONG

Evaluating query in calculus
Declarative – how build new relation {x|f(x)}?
• Go through each candidate tuple value for x
• Is f(x) true when substitute candidate value for

free variable x?
• If yes, candidate tuple is in new relation
• If no, candiate tuple is out

What are candidates?
• Do we know domain of x?
• Is domain finite?

5

Problem

• Consider {T | not (T ε tp) }
– Wide open – what is schema for T?

• Consider {T | S ((S ε tp) =>
(not (T.name = S.name and

T.rank = S.rank))) }
– Now T:(name, rank) but universe is infinite

Don’t want to consider infinite set of values

A

Constants of a database and query
Want consider only finite set of values

– What are constants in database and query?

Define:
• Let I be an instance of a database

– A specific set of tuples (relation) for each base
relational schema

• Let Q be a relational calculus query
• Domain (I,Q) is the set of all constants in Q or I

Safe query

• A query Q on a relational database with base
schemas {Ri} is safe if and only if for all
instances I of {Ri} , any tuple in Q(I) – the
relation resulting from applying Q to I – contains
only values in Domain(I, Q)

• Means at worst candidates are all tuples can form from
finite set of values in Domain(I, Q)

6

Text goes further

• Requires testing quantifiers has finite
universe:
– For each T(p(T)) in the formula of Q, if p(t)

is true for tuple t, then attributes of t are in
Domain(I, Q)

– For each T(p(T)) in the formula of Q, if t is a
tuple containing a constant not in
Domain(I,Q), then p(t) is true

=> Only need to test tuples in Domain(I,Q)

E

A

The relational algebra and
the tuple relational calculus
over safe queries
are equivalent in expressiveness

Domain relational calculus

• Similar but variables range over domain
values (i.e. attributes) not tuples

• Is equivalent to tuple relational calculus

• Example:
{<N, K, M> | (N, K) ε tp and (M, K) ε tp }

7

Summary

• The relational calculus provides an
alternate way to express queries

• A formal model based on logical formulae
and set theory

• Equivalence with algebra means can use
either or both – but only one for formal
proofs

• Next we will see that SQL borrows from
both

