Relational division – how derive

- Given relations R and Q with attribute sets C(R) and C(Q),
 - Attribute set gives names and domains
- Such that C(Q) proper subset of C(R)
- R/Q is a relation with attribute set C(R/C) = C(R) - C(Q)
 - A tuple is in R/Q exactly when combining (concatenating) it
 with every tuple in Q yields a tuple in R
 - R/Q is a subset of \(\pi_{C(R)-C(Q)}(R) \)
 - R/Q is expressed with basic relational operations as
 \[\pi_{C(R)-C(Q)}(R) - \pi_{C(R)-C(Q)}(\pi_{C(R)-C(Q)}(R) \times Q) \]

Huh?

- Let \((d_1, \ldots, d_m) \in \pi_{C(R)-C(Q)}(R)\)
 - Let \((q_1, \ldots, q_n) \in Q\)
- \((d_1, \ldots, d_m, q_1, \ldots, q_n) \in (\pi_{C(R)-C(Q)}(R) \times Q)\) may or may not
 be in R
- If \((d_1, \ldots, d_m, q_1, \ldots, q_n)\) not in R, then \((d_1, \ldots, d_m)\) not in R/Q
 \[\Rightarrow \]
 - Correct to subtract \((d_1, \ldots, d_m) \in \pi_{C(R)-C(Q)}(\pi_{C(R)-C(Q)}(R) \times Q - R)\)
 from \(\pi_{C(R)-C(Q)}(R)\)

Subtract \(\pi_{C(R)-C(Q)}(\pi_{C(R)-C(Q)}(R) \times Q - R)\) from \(\pi_{C(R)-C(Q)}(R)\)?

- Let \((d_1, \ldots, d_m) \in \pi_{C(R)-C(Q)}(R)\)
 - Let \((q_1, \ldots, q_n) \in Q\)
- But have we subtracted enough from \(\pi_{C(R)-C(Q)}(R)\) ?
 - If \((d_1, \ldots, d_m)\) not in R/Q, then there is some \((q_1, \ldots, q_n)\) \in Q
 such that \((d_1, \ldots, d_m, q_1, \ldots, q_n)\) not in R
 \[\Rightarrow \]
 \[(d_1, \ldots, d_m, q_1, \ldots, q_n) \in (\pi_{C(R)-C(Q)}(R) \times Q) - R \]
 \[\Rightarrow \]
 \[(d_1, \ldots, d_m) \in \pi_{C(R)-C(Q)}((\pi_{C(R)-C(Q)}(R) \times Q) - R) \]
 Yes, we have subtracted all that is needed

Note that \(\pi_{C(Q)}(R)\) may contain elements not in Q.
Not affect result.
Board examples

Formal definition

- A relational expression is
 - A relation R in the database
 - A constant relation
 - For any relational expressions E₁ and E₂
 - E₁ U E₂
 - E₁ – E₂
 - E₁ X E₂
 - σ_P(E₁) for predicate P on attributes of E₁
 - π_S(E₁) where S is a subset of attributes of E₁
 - ρ(Q,L), E₁) where Q is a new relation name and L is a list of (old name → new name) mappings of attributes of E₁

- A query in the relational algebra is a relational expression

Summary

- Relational algebra operations provide foundation of query languages for database systems
- Derived operations, especially joins, simplify expressing queries
- Formal algebraic definition allow for provably correct simplifications, optimizations for query evaluation