Relational division - how derive

- Given relations R and Q with attribute sets $C(R)$ and $C(Q)$, - Attribute set gives names and domains
- Such that $C(Q)$ proper subset of $C(R)$
- R / Q is a relation with attribute set $C(R / C)=C(R)-C(Q)$
- A tuple is in R / Q exactly when combining (concatenating) it with every tuple in Q yields a tuple in R
$-R / Q$ is a subset of $\pi_{C(R) \cdot C(Q)}(R)$
- R / Q is expressed with basic relational operations as
\qquad
\qquad
\qquad
\qquad $\pi_{C(R)-C(Q)}(R)-\pi_{C(R)-C(Q)}\left(\left(\pi_{C(R)-C(Q)}(R) \times Q\right)-R\right)$

Huh?

Subtract $\left.\Pi_{C(R)-C(Q)}\left(\Pi_{C(R)-C(Q)}(R) \times Q\right)-R\right)$ from $\Pi_{C(R)-C(Q)}(R)$?

- Let $\left(d_{1}, \ldots, d_{m}\right) \varepsilon \pi_{C(R)-C(Q)}(R)$
- Let $\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{n}}\right) \varepsilon \mathrm{Q}$
- $\left(\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{m}}, \mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{n}}\right) \varepsilon\left(\Pi_{\mathrm{C}(\mathrm{R})-\mathrm{C}(\mathrm{Q})}(\mathrm{R}) \times \mathrm{Q}\right)$ may or may not be in R
- If $\left(d_{1}, \ldots, d_{m}, q_{1}, \ldots, q_{n}\right)$ not in R, then $\left(d_{1}, \ldots, d_{m}\right)$ not in R/Q $=>$ If $\left(d_{1}, \ldots, d_{m}, q_{1}, \ldots, q_{n}\right)$ in $\left(\left(\pi_{C(R)-C(Q)}(R) \times Q\right)-R\right)$ then $\left(d_{1}, \ldots, d_{m}\right)$ not in R/Q
=> Correct to subtract
$\left(d_{1}, \ldots, d_{m}\right) \varepsilon \pi_{C(R)-C(Q)}\left(\left(\pi_{C(R)-C(Q)}(R) X Q\right)-R\right)$ from $\boldsymbol{T}_{\mathbf{C (R)}}-\mathbf{C (Q)}(\mathbf{R})$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Subtract $\left.\Pi_{C(R)-C(Q)}\left(\Pi_{C(R)-C(Q)}(R) \times Q\right)-R\right)$ from $\Pi_{C(R)-C(Q)}(R)$?

- Let $\left(\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{m}}\right) \varepsilon \pi_{\mathrm{C}(\mathrm{R})-\mathrm{C}(\mathrm{Q})}(\mathrm{R})$
- Let $\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{n}}\right) \varepsilon \mathrm{Q}$ \qquad
But have we subtracted enough from $\boldsymbol{\pi}_{\mathbf{C}(\mathrm{R})-\mathrm{C}(\mathrm{Q})}(\mathbf{R})$?
- If $\left(d_{1}, \ldots, d_{m}\right)$ not in R / Q, then there is some $\left(q_{1}, \ldots, q_{n}\right) \varepsilon Q$ such that ($d_{1}, \ldots, d_{m}, q_{1}, \ldots, q_{n}$) not in R $\Rightarrow\left(d_{1}, \ldots, d_{m}, q_{1}, \ldots, q_{n}\right)$ in $\left(\left(\pi_{C(R)-C(Q)}(R) \times Q\right)-R\right)$
$\Rightarrow\left(d_{1}, \ldots, d_{m}\right)$ in $\pi_{C(R)-C(Q)}\left(\left(\pi_{C(R)-C(Q)}(R) X Q\right)-R\right)$

Yes, we have subtracted all that is needed

Note that $\pi_{C(Q)}(R)$ may contain elements not in Q Not affect result.

Board examples

Formal definition

- A relational expression is
- A relation R in the database
- A constant relation
- For any relational expressions E_{1} and E_{2}
- $E_{1} \cup E_{2}$
- $E_{1}-E_{2}$
- $\sigma_{P}\left(E_{1}\right)$ for predicate P on attributes of E_{1}
- $\pi_{s}\left(\mathrm{E}_{1}\right)$ where S is a subset of attributes of E_{1}
- $\rho\left(Q(L), E_{1}\right)$ where Q is a new relation name and L is a list of (old name \rightarrow new name) mappings of attributes of E_{1}
- A query in the relational algebra is a relational expression

Summary

- Relational algebra operations provide \qquad foundation of query languages for database systems
- Derived operations, especially joins, simplify expressing queries
- Formal algebraic definition allow for provably correct simplifications, optimizations for query evaluation

