COS 425: Database and Information Management Systems

Relational model: Relational algebra

Modeling access

- Have looked at modeling information as data + structure
- Now: how model access to data in relational model?
- Formal specification of access provides:
 - Unambiguous queries
 - Correctness of results
 - Expressiveness of query languages

Queries

• A query is a mapping from a set of relations to a relation

Query: relations \rightarrow relation

- Can derive schema of result from schemas of input relations
- Can deduce constraints on resulting relation that must hold for any input relations
- · Can identify properties of result relation

Relational query languages

- Two formal relational languages to describe mapping
 Relational algebra
 - Procedural lists operations to form query result
 Relational calculus
 - Declarative describes results of query
- Equivalent expressiveness
- · Each has strong points for usefulness
 - DB system query languages (e.g. SQL) take best of both

begin with Relational Algebra

Basic operations of relational algebra:

- 1. Selection σ :select a subset of tuples from a relation according to a condition
- 2. Projection π :delete unwanted attributes (columns) from tuples of a relation
- 3. cross product X : combine all pairs of tuples of two relations by making tuples with all attributes of both
- 4. Set difference :* tuples in first relation and not in second
- 5. union U:* tuples in first relation or second relation
- 6. Renaming p: to deal with name conflicts

* Set operations: D₁ X D₂ ... X D_k of two relations must agree

Board examples

Formal definition

- A relational expression is
 A relation R in the database
 A constant relation

 - $\begin{array}{l} \mbox{ A constant relation} \\ \mbox{ For any relational expressions } E_1 \mbox{ and } E_2 \\ \cdot \mbox{ } E_1 \mbox{ } E_2 \\ \cdot \mbox{ } \sigma_{p}(E_1) \mbox{ for predicate } P \mbox{ on attributes of } E_1 \\ \cdot \mbox{ } \pi_{g}(E_1) \mbox{ where } S \mbox{ is a subset of attributes of } E_1 \\ \cdot \mbox{ } P(Q(L), \mbox{ } E_1) \mbox{ where } Q \mbox{ is a new relation name and } L \mbox{ is a list of } (\mbox{ old name} \rightarrow \mbox{ new name}) \mbox{ mappings of attributes of } E_1 \end{array}$
- A query in the relational algebra is a relational expression