cos 425:
Database and Information Management Systems
Relational model:
Relational algebra

Modeling access

\qquad

- Have looked at modeling information as \qquad data + structure
- Now: how model access to data in \qquad relational model?
- Formal specification of access provides:
- Unambiguous queries \qquad
- Correctness of results
- Expressiveness of query languages

Queries

- A query is a mapping from a set of relations to a \qquad relation

$$
\text { Query: relations } \rightarrow \text { relation }
$$

- Can derive schema of result from schemas of \qquad input relations
- Can deduce constraints on resulting relation that \qquad must hold for any input relations
- Can identify properties of result relation \qquad
\qquad

Relational query languages

- Two formal relational languages to describe mapping \qquad
- Relational algebra
- Procedural - lists operations to form query result \qquad - Relational calculus
- Declarative - describes results of query
- Equivalent expressiveness
- Each has strong points for usefulness
- DB system query languages (e.g. SQL) take best of both
\qquad
\qquad
\qquad
\qquad

begin with Relational Algebra

\qquad
Basic operations of relational algebra:

1. Selection σ :select a subset of tuples from a relation according to a condition
2. Projection π :delete unwanted attributes (columns) from tuples of a relation
3. cross product X : combine all pairs of tuples of two relations by making tuples with all attributes of both
4. Set difference - :* tuples in first relation and not in second
5. union U:* tuples in first relation or second relation
6. Renaming ρ : to deal with name conflicts

* Set operations: $D_{1} \times D_{2} \ldots \times D_{k}$ of two relations must agree

Board examples \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Formal definition

- A relational expression is
- A relation R in the database
- A constant relation
- For any relational expressions E_{1} and E_{2}
- $E_{1} \cup E_{2}$
- $E_{1}-E_{2}$
- $\mathrm{E}_{1} \times \mathrm{E}_{2}$
- $\sigma_{P}\left(E_{1}\right)$ for predicate P on attributes of E_{1}
- $\pi_{S}\left(E_{1}\right)$ where S is a subset of attributes of E_{1}
- $P\left(Q(L), E_{1}\right)$ where Q is a new relation name and L is a list of (old name \rightarrow new name) mappings of attributes of E_{1}
- A query in the relational algebra is a relational expression

