Relational model

- A formal (mathematical) model to represent
 - objects (data/information),
 - relationships between objects
 - Constraints on objects and relationships
 - Queries about information

- Well-founded on mathematical principles:
 - Precise semantics of constraints and queries
 - Can prove equivalence of different ways to express queries

Relational model - practice

- Foundation of most Database Management Systems

- SQL language is a programming language to express constructs of formal model
Relational Database Definitions

1. A relation is a set of tuples over specified domains
 - $R \subseteq D_1 \times D_2 \times D_3 \times \ldots \times D_k$ (k-ary)
 - Each D_i is a declared domain

2. A relational database is a set of relations and possibly constraints among the relations

Relational Database: Terminology

Schema for a relation:
1. Relation name
2. Domain (type) of each component
 i.e. declare D_i s

Equivalent:
- Instance of a scheme
- Table

Term "relation" is used to refer to a schema and a particular instance – disambiguate by context

Relational Database: More Terminology

Each D_i of a schema is referred to as a component or attribute or field or column of the schema

Each d_i of a tuple $= (d_1, d_2, d_3, \ldots d_k)$ is referred to as component or attribute or field of the tuple

Each tuple of a relation is also referred to as an element or row of the relation
Translating ER model to relational

- **Domains** → domains
- **Entity** → relation
- **Relationship** → one or more relations
 - come back to Constraints → constraints BUT
 - Not all ER constraints expressible in basic relational model

Relation model is FLAT – no hierarchy!

Our ER Example → Relational schema

For entities, get relations:

- **books**:
 - (title, ISBN#, edition, date)
- **authors**:
 - (name, gender, birth date, place of birth, date of death)
- **publishers**:
 - (name, country, address)

Need declare domains:
- e.g. title: string

Same def: candidate keys, primary key, superkeys

Our ER Example → Relational schema

For relationships:

ER **published by**:
- (books, publishers, in print)
 - becomes
 - published by: (isbn#, publisher_name, in print)

ER **written by**:
- (books, authors)
 - becomes
 - written by:
 - (isbn#, author_name, birth date, place of birth)

Keys for these?
Our ER Example → Relational schema

For relationships:

ER published by: \(\text{(books, publishers, in print)} \)
becomes
published by: \(\text{(isbn#, publisher_name, in print)} \)
 key constraint on entity books in relationship published by →
 A book has at most one publisher

ER written by: \(\text{(books, authors)} \)
becomes
written by: \(\text{(isbn#, author_name, birth date, place of birth)} \)

Our ER Example → Relational schema

Because ER key constraint on entity books in relationship published by
Can fold relation published by into relation books:

books:
 (title, ISBN#, edition, date, pub_name, in print)

What if some books not published?
 i.e. entity books not totally participate in relationship
 published by

Our ER Example → Relational schema

books:
 (title, ISBN#, edition, date, pub_name, in print)

What if some books not published?
 i.e. entity books not totally participate in relationship published by

Must allow values
 of attributes pub_name and in print to be null
Translating ER model to relational

General conclusion: Relationship \rightarrow one zero or more relations

• Get flat set of relations
• But relations are interrelated
 – Bring together primary keys of different relations to build new relation
 – Captures ER relationship
• How capture this in relational model?
 Foreign key constraints

Foreign key constraint

• Specify that a set of attributes in schema for one relation form the primary key for a specific other relation
 – "other relation" is referred to or referenced by first relation

R1: (attrib1, attrib2, attrib3, attrib4, attrib5)
R1 refers to/references R2
R2: (attrib1, attrib2, attrib3, attrib4)
Foreign Keys for Our Example

published by: (isbn#, publisher_name, in print)
isbn# is a foreign key referencing books

Primary key of books understood
Publisher_name is a foreign key referencing publishers

written by:
(isbn#, author_name, birth date, place of birth)
isbn# is a foreign key referencing books;
(author_name, birth date, place of birth) is a foreign key referencing authors

Board Examples