
1

1

COS 425:
Database and Information

Management Systems

XML and information exchange

2

XML
eXtensible Markup Language

History
1988 SGML: Standard Generalized Markup Language

– Annotate text with structure
1992 HTML: Hypertext Mark-up Language

– Documents that are linked pieces
– Simple structure of language

1996 XML
– General-purpose description of content of a document
– Includes namespaces → linking across the Web
– Designed by working group of W3C (WorldWide Web

Consortium)
• Define standard

3

XML
On surface looks much like HTML:

• Tags: <title> title of document</title>
• Structure: tags within tags

<body><table> …</table> <p>…</p> </body>

– Must be nested → hierarchy
• Tags have attributes <body bgcolor="#ffffff">

But Tags are User-defined
• General metadata

2

4

XML
• Originally tags generalized description of

document display– allow flexibility in markup
• Now tags can have any meaning

– parties using agree in advance as to meaning

• Can use as data specification

XML has become major vehicle of exchanging data
among unrelated, heterogeneous parties
– Internet major vehicle of distribution

5

Example XML
<students>

<student>
<year>2007</year>
<name><fn>Joe </fn><ln>Jones</ln></name>
<address>…</address>
<course type=“deptal”>cos 425</course>
<course type=“deptal”>cos 432</course>
<course type=“elective”>eng 331</course>
etc.

</student>
<student> ………</student>

….
</students>

6

Important XML concepts

• Information/data contained in a document
– Document = Database

• Tags contain text and other tags
• Tags can be repeated arbitrary number of times
• Tags may or may not appear

– Example for <student>: …<sport>football</sport>…

• Attributes of tags (strings) may or may not appear
• Tags need not appear in rigid order

3

7

Benefits of XML representation
• Self documenting by tag names
• Flexible formatting

– Can introduce new tags or values
• Format can evolve without invalidating old
• Can have multi-valued components

– e.g. courses of student, authors of book
• Wide variety of tools can process

– Browsers
– DB tools

8

Undesirable properties of XML
representation

• Verbose representation:
repetition of tag names

• Inefficient

• Redundant representation
– Document contains all info, even if much does

not change
• eg document containing employee info:

basic name, address, etc. repeated even if only
assignment changes

• Compare one table in relational DB

9

Board Example

4

10

Specification
Need exchange syntax (semantics?) as well as

XML document:

• XSL – eXtensible Style Language
– How display information

• DTD = Document Type Declaration
– User specifies own tags and attributes
– User-defined grammar for syntax

XML Schema – similar to but more general than
DTD

11

Semistructured Data Model
• XML gives structure, but not fully or rigidly

specified
• Tag <> … </> defines XML element

- Elements may contain sub-elements
- Elements may contain values
- Elements may have attributes

• Use labeled tree model
- Element → node: atomic or compound object
- Leaves: values and attributes

12

Example
<students>

<student>
<year>2005</year>
<name><fn>Joe </fn><ln>Jones</ln></name>
<address>…</address>
<course type=“deptal”>cos 425</course>
<course type=“elective”>eng 331</course>
etc.

</student>
<student> ………</student>

….
</students>

5

13

students

student student ….. student

year name address course1 course2 … coursek

2005 fn ln … cos425 deptal eng331 elective psy255 …

Joe Jones

type type

14

XML Tools

• Display
– Very flexible what and how display

• Convert to different represenation
– Example: put in relational database?

• Extract information from XML document
Querying

15

Querying XML
• Storing data in XML; want to query
• Could map to relational model, but then

must restructure data
• Several querying languages

– XPath : now building block
– Quilt : historic
– XQuery
– XSLT : designed for style sheets but general

6

16

XQUERY

• Specified by W3C working group
– Circa 2000

• Derived from older languages
• Modeled after SQL

17

Brief look at XQUERY
FLWOR (flower) expression:
• FOR path expression – anal. to SQL “FROM”
• LET variable name = path expression – anal. To SQL “AS”
• WHERE condition – anal. to SQL “WHERE”
• ORDER BY – anal. to SQL “ORDER BY”
• RETURN – constructs XML result – anal to SQL “SELECT”

XQUERY returns XML fragment

– XML → XML
• Compare: relations → relation

XQuery
SQL

18

Path expression
• Traverse paths of tree

– Use element names to name path
• Take all matching branches
• Returns sequence of nodes of tree

– Node = XML elements

Doc. Identifier // element name /
e.g. URL indicates element indicates immed.
root of tree nested anywhere- child of path so

jump down tree far
at this point in path

e.g. /students/student/course

7

19

students

student student ….. student

year name address course1 course2 … coursek

2005 fn ln … cos425 deptal eng331 elective psy255 …

Joe Jones

type type

20

Path expressions – some details
• Returns sequence of matching elements

– Includes tags of those elements
– Sequence ordered by appearance in document

• Attributes can be accessed: @attribute_name
• … /* denotes all children of elements …/
• Predicates at any point in path

– Prunes out paths
– e.g. /students/student/course[@type=‘deptal’]

• Doc(document name) returns root of a named
document
– File name
– URL (URI)

21

XQuery FOR …

For $x in path expression 1,
$y in path expression 2,

…
• $ precedes variable name
• Each variable ranges over sequence of

elements returned by its path expression
• Multiple variables => Cartesian product

8

22

XQuery Let …

Let $z := path expression1
Let $q := path expression2
…

Value of variable (e.g. $z) is entire sequence
if path expression returns sequence

23

XQuery WHERE …

WHERE predicate

• Predicate on set defined in FOR
FOR $b IN /students/student
WHERE $b/year=‘2007’

• Rich set of functions, comparison
operations

24

XQuery RETURN …
• Constructs XML result
• Give explicit tags for result
• Give expressions to be evaluated

{expression}
• Example

FOR $b IN doc_id/students/student
WHERE $b/year=‘2005’
RETURN <Result>{$b/name/fn $b/name/ln} </Result>

Gives: <Result><fn>Joe</fn><ln><Jones></ln></Result>
<Result> …
etc.

9

25

Example
FOR $x IN doc_id//name/ln
RETURN <LastName>{$x}</LastName>

Gives: ?
For : <students>

<student>
<year>2007</year>
<name><fn>Joe </fn><ln>Jones</ln></name>
…

</student>
<student>

<year>2008</year>
<name><fn>Jane </fn><ln>Smith</ln></name>
…

</student>

</students>

26

Examples
FOR $x IN doc_id//name/ln
RETURN < LastName >{$x}</LastName >

Gives: <LastName><ln>Jones</ln></LastName>
< LastName ><ln>Smith</ln></LastName >

27

Examples
FOR $x IN doc_id//name/ln
RETURN < LastName >{$x/text()}</LastName >

Gives: <LastName>Jones</LastName>
< LastName >Smith</LastName >

• Many functions

10

28

XQuery: A very incomplete list of features

• Are aggregation operations
• Can nest XQuery expressions in RETURN clause

– Can get nested elements in result not nested in original

• Get joins: conditions in WHERE coordinate paths
expressions over variables in FOR

• Can have if…then ...else within RETURN clause
• Can have quantification within WHERE clause

– SOME $e IN path expression SATISFIES predicate with $e free
– EVERY $e IN …

