
1

1

COS 425:
Database and Information

Management Systems

Query Evaluation:
Beyond Joining

2

Selection

• Operating on only one relation (file)
• Worst case: sequential search

– Linear time
– Often best case too

• If have index on R.f?
– Equality condition on R.f

=> look up cost of index
– Range lb ≤ R.f ≤ ub condition and tree index

=> look up cost of index

2

3

Selection with multiple conditions
R.x = a AND (R.y = b OR R.z < c) …

• Linear search: check Boolean expression
of all conditions at once
– No extra cost – all in main memory

• If have indexes on fields in selection
– AND of conditions:

• use index giving lowest cost to retrieve candidates
satisfying condition on field of index

– Cost to retrieve record?
– Number of records retrieve?

• Check other conditions on retrieved records

4

Selection with multiple conditions
continued

• If have indexes on fields in selection
– OR of conditions:

1. Retrieve records satisfying each and every
condition using index

2. Union retrieved sets to form result of OR
Total cost of 1. must be less than one linear scan
If any field used in condition has no index must
do scan
=> only do scan

3

5

Selection with multiple conditions AND
indexes giving record pointers*

If index for every field involved => alternative algorithm:
1. For each equality or inequality condition

Retrieve using index, the pointers (record IDs)
for records satisfying condition

2. Sort sets of pointers
3. Merge sets of pointers

• For AND, take intersection
• For OR, take union

4. Retrieve actual data records using pointers
Must evaluate if will be cheaper than getting data records

earlier in process

* i.e. “Alternative 2” [R&G] indexes or secondary-type indexes

6

Using record pointers

• If can get pointers for all records in query
result can look up data records once

• Manipulate pointers of candidate records
– Smaller size

• When ready to retrieve data records
– Sort disk page location of pointers

• Result may be much smaller than relation
– Read each disk page once
– Read disk pages contiguously

4

7

Projection
• Must read all records – linear scan
• Only issue is duplicate removal

1. Most common technique: Sort
– Can eliminate unwanted fields in Stage 1 of sort

– Shrinks record size => less pages to write (maybe)
– Can eliminate duplicates in merge phases of sort

2. Alternate technique: analogous to hash-join
1. Drop fields don’t want and hash into F-1 buckets
2. For each bucket

1. If bucket fits in F-1 buffer pages, eliminate duplicates
2. Otherwise, recurse

3. Gift: sorted file on multi-field sort key and fields want
are a prefix

– When eliminate unwanted fields, duplicates adjacent

8

COS 425:
Database and Information

Management Systems

Query Optimization

5

9

Query Optimization

• Query as expression over relational
algebraic operations

• Get evaluation (parse) tree
– Leaves: base relations
– Interior nodes: operations

10

Example
Πbname (σcity=‘Rome’ ((customer ◊◊ depositor) ◊◊ acct))

◊◊

◊◊ acct

customer depositor

Πbname

σcity=‘Rome’

6

11

Optimization considerations

• Choice of algorithm at each interior node
– Cost Estimates

• We’ve just studied analysis

• Rearrange tree
– Use algebra of operations

• e.g. associativeness of JOIN
◊◊

◊◊ C

A B

◊◊

◊◊A

B C

(A ◊◊ B) ◊◊ C
=

A ◊◊ (B ◊◊ C)

12

Interaction of algorithm choice and
tree arrangement

• Convention: for any nested loop join, left branch
represents outer relation
– Control with commutivity of JOIN

(A ◊◊ B) = (B ◊◊ A) ◊◊

A B

◊◊

B A

• Result of an interior node is input to parent
- Algorithm affects properties of presentation of result

-Sorted?
• Cost analysis must proceed bottom up

7

13

Issues
• Need size estimates of result relation

– # records per page (size of record)
– # of pages (# of records)
– Note:

• page size fixed system parameter
• Duplicates significantly affect # of records

• Need plan for buffer use
– Write out all results of interior nodes to disk

• Costs of writes for intermediate results count!
– Intermediate result fits in buffer

• Algorithm for parent use this?
• Can save cost of writing result by child AND reading result by

parent
– Pipeline result of child as input to parent

14

Pipelining

• Parent and child execute concurrently
• Parent and child share buffer space

– k-page shared (sub)buffer
– child produces k pages of output – Fill buffer
– parent consumes k pages of input from child –

Empty buffer
– NO disk write cost child;
– NO disk read cost parent

• Algorithms of child and parent must support this
– Child: usually does; produce 1 page output at a time
– Parent: choice of algorithm critical !

8

15

Algorithms for parent - JOIN
• Block nested loop?

• Index nested loop?

• Sort-merge

• Hash

16

Algorithms for parent - JOIN
• Block nested loop?

– Outer relation – ok
• Read relation once buffer block by buffer block
• Shared buffer becomes block

– Inner relation – NO
• Must re-read entire inner relation for every block outer

• Index nested loop?

• Sort-merge

• Hash

9

17

Algorithms for parent - JOIN
• Block nested loop?

– Outer relation – ok
• Read relation once buffer block by buffer block
• Shared buffer becomes block

– Inner relation – NO
• Must re-read entire inner relation for every block outer

• Index nested loop?
– Outer relation – ok – same as Block nested loop
– Inner relation – NO

• Using index

• Sort-merge

• Hash

18

Algorithms for parent - JOIN
• Block nested loop?

– Outer relation – ok
– Inner relation – NO

• Index nested loop?
– Outer relation – ok – same as Block nested loop
– Inner relation – NO

• Sort-merge
– To sort input relation:

• Can pipeline from child to block of buffers for Stage 1
(Stage 1: sorting individual blocks)

– If child produces in sorted order, pipeline merge
• Child must be outer relation if duplicates

• Hash

10

19

Algorithms for parent - JOIN
• Block nested loop?

– Outer relation – ok
– Inner relation – NO

• Index nested loop?
– Outer relation – ok – same as Block nested loop
– Inner relation – NO

• Sort-merge
– To sort input relation:

• Can pipeline from child to block of buffers for Stage 1
(Stage 1: sorting individual blocks)

– If child produces in sorted order, pipeline merge
• Child must be outer relation if duplicates

• Hash
– To partition input relation:

• Can pipeline from child to block of buffers for Stage 1

20

Allocating buffers

• If have simultaneous pipelining up tree
– How many buffers for each child to parent

exchange?
– Affects speed of algorithms

• Limit number of simultaneous pipelines
• If no pipeline between child and parent

materialize result of child
– Child writes result to disk
– Parent reads from disk

11

21

Multi-operation query

• Want plan
– parse tree
– Pipelining plan for each edge
– Algorithm for each interior node (operation)

• To build plan
– Consider alternatives

• ALL?
– Estimate costs
– Choose “best”

• Really “good enough”

22

Catalog
• Need info about base relations
• In catalog:

– For each base relation:
• # tuples
• # pages

– List of existing indexes
– For each index

• # distinct search-key values
• # pages

– For each tree index
• Tree height
• high/low search keys

12

23

Calculating size estimates of result
• Assume

– independence of fields of a tuple
– Uniform distribution of values of each field among

tuples
• Calculate reduction factor (RF) for # tuples of

result
– Examples:

σfield = constant and index on field:
RF = 1/(# search key values)

σfield > constant and tree index on field:
(high key value) – constant

RF =
(high key value) – (low key value)

– Estimate # pages output as RF * (# pages input relation)

24

Reduction factor of joins
• Estimate # tuples of (R◊◊ R.f = S.f S) as

RF * (# tuples R) * (# tuples S)
– Looking at join as selection on RXS

• Example: ◊◊ R.f = S.f
– If indexes on R.f and S.f

RF = 1/max (# key values R.f, # key values S.f)
– If no indexes, could use # distinct values

– What if real-valued?

13

25

Size of tuples of result

• If fields of fixed length, calculate
– Projection: sizes of fields retained
– Cross-product RXS: sum of sizes of tuples in

R and S
• Join with single occurrence equal fields

– Projection of Cross-product

– Selection & Union-compatible set operations:
no change

• If fields of variable length, estimate

26

Planning

• Know how estimate costs of algorithms
• Know how estimate sizes of results ON
• How use to make plan for query eval?

SKETCH ON BOARD

