
Learning To Play Chess Using Temporal Differences

Jonathan Baxter (jonathan.baxter@anu.edu.au)
Department of Systems Engineering, Australian National University 0200, AUSTRALIA

Andrew Tridgell (andrew.tridgell@cs.anu.edu.au)
and Lex Weaver (lex.weaver@cs.anu.edu.au)
Department of Computer Science, Australian National University 0200, AUSTRALIA

Abstract. In this paper we present TDLEAF(), a variation on the TD() algorithm that

enables it to be used in conjunction with game-tree search. We present some experiments in

which our chess program “KnightCap” used TDLEAF() to learn its evaluation function while

playing on Internet chess servers. The main success we report is that KnightCap improved

from a 1650 rating to a 2150 rating in just 308 games and 3 days of play. As a reference,

a rating of 1650 corresponds to about level B human play (on a scale from E (1000) to A

(1800)), while 2150 is human master level. We discuss some of the reasons for this success,

principle among them being the use of on-line, rather than self-play. We also investigate

whether TDLEAF() can yield better results in the domain of backgammon, where TD()

has previously yielded striking success.

Keywords: Temporal Difference Learning, Neural Network, TDLEAF, Chess, Backgammon

c 2001 Kluwer Academic Publishers. Printed in the Netherlands.

gen.tex; 19/01/2001; 10:19; p.1
Sridhar Mahadevan (none:kluwer) v.1.1

2 J. BAXTER, A. TRIDGELL, AND L. WEAVER

1. Introduction

Temporal Difference learning, first introduced by Samuel (Samuel, 1959)
and later extended and formalized by Sutton (Sutton, 1988) in his TD()
algorithm, is an elegant technique for approximating the expected long term
future cost (or cost-to-go) of a stochastic dynamical system as a function of
the current state. The mapping from states to future cost is implemented by a
parameterized function approximator such as a neural network. The parame-
ters are updated online after each state transition, or possibly in batch updates
after several state transitions. The goal of the algorithm is to improve the cost
estimates as the number of observed state transitions and associated costs
increases.
Perhaps the most remarkable success of TD() is Tesauro’s TD-Gammon,

a neural network backgammon player that was trained from scratch using
TD() and simulated self-play. TD-Gammon is competitive with the best
human backgammon players (Tesauro, 1994). In TD-Gammon the neural
network played a dual role, both as a predictor of the expected cost-to-go of
the position and as a means to select moves. In any position the next move was
chosen greedily by evaluating all positions reachable from the current state,
and then selecting the move leading to the position with smallest expected
cost. The parameters of the neural network were updated according to the
TD() algorithm after each game.
Although the results with backgammon are quite striking, there is linger-

ing disappointment that despite several attempts, they have not been repeated
for other board games such as othello, Go and the “drosophila of AI” —
chess (Thrun, 1995; Walker, Lister, & Downs, 1993; Schraudolph, Dayan, &
Sejnowski, 1994).
Many authors have discussed the peculiarities of backgammon that make it

particularly suitable for Temporal Difference learning with self-play (Tesauro,
1992; Schraudolph et al., 1994; Pollack, Blair, & Land, 1996). Principle
among these are speed of play: TD-Gammon learnt from several hundred
thousand games of self-play, representation smoothness: the evaluation of a
backgammon position is a reasonably smooth function of the position (viewed,
say, as a vector of piece counts), making it easier to find a good neural
network approximation, and stochasticity: backgammon is a random game
which forces at least a minimal amount of exploration of search space.
As TD-Gammon in its original form only searched one-ply ahead, we feel

this list should be appended with: shallow search is good enough against
humans. There are two possible reasons for this; either one does not gain
a lot by searching deeper in backgammon (questionable given that recent
versions of TD-Gammon search to three-ply and this significantly improves
their performance), or humans are simply incapable of searching deeply and

gen.tex; 19/01/2001; 10:19; p.2

Learning to Play Chess 3

so TD-Gammon is only competing in a pool of shallow searchers. Although
we know of no psychological studies investigating the depth to which humans
search in backgammon, it is plausible that the combination of high branching
factor and random move generation makes it quite difficult to search more
than one or two-ply ahead. In particular, random move generation effectively
prevents selective search or “forward pruning” because it enforces a lower
bound on the branching factor at each move.
In contrast, finding a representation for chess, othello or Gowhich allows a

small neural network to order moves at one-ply with near human performance
is a far more difficult task. It seems that for these games, reliable tactical
evaluation is difficult to achieve without deep lookahead. As deep lookahead
invariably involves some kind of minimax search, which in turn requires an
exponential increase in the number of positions evaluated as the search depth
increases, the computational cost of the evaluation function has to be low,
ruling out the use of expensive evaluation functions such as neural networks.
Consequently most chess and othello programs use linear evaluation func-
tions (the branching factor in Go makes minimax search to any significant
depth nearly infeasible).
Our goal is to develop techniques for using TD() in domains dominated

by search. In this paper we introduce TDLEAF(), a variation on the TD()
algorithm, that can be used to learn an evaluation function for use in deep
minimax search. TDLEAF() differs from TD() in that instead of operating
on positions that occur during the game, it operates on the leaf nodes of the
principal variation of a minimax search from each position (also known as
the principal leaves).
To test the effectiveness of TDLEAF(), we incorporated it into our

own chess program — KnightCap. KnightCap has a particularly rich board
representation facilitating computation of sophisticated positional features,
although this is achieved at some cost in speed (KnightCap is about 10
times slower than Crafty — the best public-domain chess program — and
6,000 times slower than Deep Blue). We trained KnightCap’s linear evalu-
ation function using TDLEAF() by playing it on the Free Internet Chess
Server (FICS, fics.onenet.net) and on the Internet Chess Club (ICC,
chessclub.com). Internet play was used to avoid the premature conver-
gence difficulties associated with self-play. The main success story we report
is that starting from an evaluation function in which all coefficients were set
to zero except the values of the pieces, KnightCap went from a 1650-rated
player to a 2150-rated player in just three days and 308 games. KnightCap is
an ongoing project with new features being added to its evaluation function
all the time. We use TDLEAF() and Internet play to tune the coefficients of
these features.
Simultaneously with the work presented here, Beal and Smith (Beal &

Smith, 1997) reported positive results using essentially TDLEAF() and self-

gen.tex; 19/01/2001; 10:19; p.3

4 J. BAXTER, A. TRIDGELL, AND L. WEAVER

play (with some random move choice) when learning the parameters of an
evaluation function that only computed material balance in chess. However,
they were not comparing performance against on-line players, but were pri-
marily investigating whether the weights would converge to “sensible” values
at least as good as the naive (1, 3, 3, 5, 9) values for (pawn, knight, bishop,
rook, queen) (they did, in about 2000 games).
Sutton and Barto (Sutton & Barto, 1998) have outlined, but not im-

plemented, a scheme for combining TD-style backups with deep minimax
search. Their method would calculate all the one-step differences seen during
the construction of the search tree.
The remainder of this paper is organized as follows. In section 2 we

describe the TD() algorithm as it applies to games. The TDLEAF() al-
gorithm is described in section 3. Experimental results for Internet-play
with KnightCap are given in section 4, while section 5 looks at applying
TDLEAF() to backgammon where TD() has had its greatest success.
Section 7 contains some discussion and concluding remarks.

2. The TD() algorithm applied to games

In this section we describe the TD() algorithm as it applies to playing board
games. We discuss the algorithm from the point of view of an agent playing
the game.
Let denote the set of all possible board positions in the game. Play

proceeds in a series of moves at discrete time steps . At time
the agent finds itself in some position , and has available a set of
moves, or actions (the legal moves in position). The agent chooses
an action and makes a transition to state with probability

. Here is the position of the board after the agent’s move
and the opponent’s response. When the game is over, the agent receives a
scalar reward, typically “1” for a win, “0” for a draw and “-1” for a loss.
For ease of notation we will assume all games have a fixed length of

(this is not essential). Let denote the reward received at the end of
the game. If we assume that the agent chooses its actions according to some
function of the current state (so that), the expected reward
from each state is given by

(1)

where the expectation is with respect to the transition probabilities
and possibly also with respect to the actions if the

agent chooses its actions stochastically.

gen.tex; 19/01/2001; 10:19; p.4

Learning to Play Chess 5

For very large state spaces it is not possible store the value of for
every , so instead we might try to approximate using a parameter-
ized function class , for example linear functions, splines,
neural networks, etc. is assumed to be a differentiable function of its
parameters . The aim is to find a parameter vector
that minimizes some measure of error between the approximation
and . The TD() algorithm, which we describe now, is designed to do
exactly that.
Suppose is a sequence of states in one game. For a

given parameter vector , define the temporal difference associated with the
transition by

(2)

Note that measures the difference between the reward predicted by
at time , and the reward predicted by at time . The true evaluation
function has the property

so if is a good approximation to , should be close to
zero. For ease of notation we will assume that always, so
that the final temporal difference satisfies

That is, is the difference between the true outcome of the game and the
prediction at the penultimate move.
At the end of the game, the TD() algorithm updates the parameter vector
according to the formula

(3)

where is the vector of partial derivatives of with respect to its
parameters. The positive parameter controls the learning rate and would
typically be “annealed” towards zero during the course of a long series of
games. The parameter controls the extent to which temporal dif-
ferences propagate backwards in time. To see this, compare equation (3) for

:

gen.tex; 19/01/2001; 10:19; p.5

6 J. BAXTER, A. TRIDGELL, AND L. WEAVER

(4)

and :

(5)

Consider each term contributing to the sums in equations (4) and (5). For
the parameter vector is being adjusted in such a way as to move —

the predicted reward at time —closer to —the predicted reward
at time . In contrast, TD(1) adjusts the parameter vector in such away
as to move the predicted reward at time step closer to the final reward at
time step . Values of between zero and one interpolate between these
two behaviours. Note that (5) is equivalent to gradient descent on the error
function .
Successive parameter updates according to the TD() algorithm should,

over time, lead to improved predictions of the expected reward . Pro-
vided the actions are independent of the parameter vector , it can
be shown that for linear , the TD() algorithm converges to a near-
optimal parameter vector (Tsitsikilis & Roy, 1997). Unfortunately, there is no
such guarantee if is non-linear (Tsitsikilis & Roy, 1997), or if
depends on (Bertsekas & Tsitsiklis, 1996).

3. Minimax search and TD()

For argument’s sake, assume any action taken in state leads to predeter-
mined state which we will denote by . Once an approximation to
has been found, we can use it to choose actions in state by picking the

action whose successor state minimizes the opponent’s expected
reward :

argmin (6)

If successor states are only determined stochastically by the choice of , we would choose

the action minimizing the expected reward over the choice of successor states.

gen.tex; 19/01/2001; 10:19; p.6

Learning to Play Chess 7

H
3

I
-9

D

J
-5

K
-6

E
3 -5

B

L
4*

M
2

F

N
-9

O
5

G
4 5

C
-5 4

4
A

Figure 1. Full breadth, 3-ply search tree illustrating the minimax rule for propagating values.

Each of the leaf nodes (H–O) is given a score by the evaluation function, . These

scores are then propagated back up the tree by assigning to each opponent’s internal node

the minimum of its children’s values, and to each of our internal nodes the maximum of its

children’s values. The principle variation is then the sequence of best moves for either side

starting from the root node, and this is illustrated by a dashed line in the figure. Note that the

score at the root node A is the evaluation of the leaf node (L) of the principal variation. As

there are no ties between any siblings, the derivative of A’s score with respect to the parameters

is just .

This was the strategy used in TD-Gammon. Unfortunately, for games like
othello and chess it is very difficult to accurately evaluate a position by look-
ing only one move or ply ahead. Most programs for these games employ
some form of minimax search. In minimax search, one builds a tree from
position by examining all possible moves for the computer in that position,
then all possible moves for the opponent, and then all possible moves for the
computer and so on to some predetermined depth . The leaf nodes of the
tree are then evaluated using a heuristic evaluation function (such as),
and the resulting scores are propagated back up the tree by choosing at each
stage the move which leads to the best position for the player on the move.
See Figure 3 for an example game tree and its minimax evaluation. With
reference to the figure, note that the evaluation assigned to the root node is
the evaluation of the leaf node of the principal variation; the sequence of
moves taken from the root to the leaf if each side chooses the best available
move.
In practice many engineering tricks are used to improve the performance

of the minimax algorithm, search being the most famous.
Let denote the evaluation obtained for state by applying

to the leaf nodes of a depth minimax search from . Our aim is to find a
parameter vector such that is a good approximation to the ex-

gen.tex; 19/01/2001; 10:19; p.7

8 J. BAXTER, A. TRIDGELL, AND L. WEAVER

H
4*

I
-9

D

J
10

K
8

E
4 10

B

L
4*

M
2

F

N
-9

O
5

G
4 5

C
4 4

4
A

Figure 2. A search tree with a non-unique principal variation (PV). In this case the derivative

of the root node A with respect to the parameters of the leaf-node evaluation function is

multi-valued, either or . Except for transpositions (in which case H and

L are identical and the derivative is single-valued anyway), such “collisions” are likely to be

extremely rare, so in TDLEAF() we ignore them by choosing a leaf node arbitrarily from the

available candidates.

pected reward . One way to achieve this is to apply the TD() algorithm
to . That is, for each sequence of positions in a game we
define the temporal differences

(7)

as per equation (2), and then the TD() algorithm (3) for updating the
parameter vector becomes

(8)

One problem with equation (8) is that for , is not nec-
essarily a differentiable function of for all values of , even if is
everywhere differentiable. This is because for some values of there will be
“ties” in the minimax search, i.e. there will be more than one best move avail-
able in some of the positions along the principal variation, which means that
the principal variation will not be unique (see Figure 2). Thus, the evaluation
assigned to the root node, , will be the evaluation of any one of a
number of leaf nodes.
Fortunately, under some mild technical assumptions on the behaviour of

, it can be shown that for each state , the set of for which
is not differentiable has Lebesgue measure zero. Thus for all states

gen.tex; 19/01/2001; 10:19; p.8

Learning to Play Chess 9

and for “almost all” , is a differentiable function of .
Note that is also a continuous function of whenever is a
continuous function of . This implies that even for the “bad” pairs ,

is only undefined because it is multi-valued. Thus we can still
arbitrarily choose a particular value for if happens to land on
one of the bad points. One final point to note is that as we search deeper,
discontinuities in the gradient are likely to become more dense and so most
steps in parameter space are likely to step clear across several discontinuities.
However, this did not seem to hurt us in our experiments with chess, proba-
bly because the gradient does not change all that radically between adjacent
regions in parameter space (of constant gradient).
Based on these observations we modified the TD() algorithm to take

account of minimax search in an almost trivial way: instead of working with
the root positions , the TD() algorithm is applied to the leaf posi-
tions found by minimax search from the root positions. We call this algorithm
TDLEAF(). Full details are given in Figure 3.

4. TDLEAF() and chess

In this section we describe the outcome of several experiments in which the
TDLEAF() algorithm was used to train the weights of a linear evaluation
function in our chess program “KnightCap”. For details about the program
itself, see Appendix A.

4.1. EXPERIMENTS WITH KNIGHTCAP

In our main experiment we took KnightCap’s evaluation function and set all
but the material parameters to zero. The material parameters were initialized
to the standard “computer” values: 1 for a pawn, 4 for a knight, 4 for a bishop,
6 for a rook and 12 for a queen. With these parameter settings KnightCap
(under the pseudonym “WimpKnight”) was started on the Free Internet Chess
server (FICS, fics.onenet.net) against both human and computer op-
ponents. We played KnightCap for 25 games without modifying its evaluation
function so as to get a reasonable idea of its rating. After 25 games it had a
blitz (fast time control) rating of , which put it at about B-grade
human performance (on a scale from E (1000) to A (1800)), although of
course the kind of game KnightCap plays with just material parameters set
is very different to human play of the same level (KnightCap makes no short-
term tactical errors but is positionally completely ignorant). We then turned

The standard deviation for all ratings reported in this section is about 50.

gen.tex; 19/01/2001; 10:19; p.9

10 J. BAXTER, A. TRIDGELL, AND L. WEAVER

Let be a class of evaluation functions parameterized by . Let
be positions that occurred during the course of a game, with

the outcome of the game. For notational convenience set
.

1. For each state , compute by performing minimax search to
depth from and using to score the leaf nodes. Note that
may vary from position to position.

2. Let denote the leaf node of the principle variation starting at . If
there is more than one principal variation, choose a leaf node from the
available candidates at random. Note that

(9)

3. For , compute the temporal differences:

(10)

4. Update according to the TDLEAF() formula:

(11)

Figure 3. The TDLEAF() algorithm

on the TDLEAF() learning algorithm, with and the learning rate
. The value of was chosen heuristically, based on the typical delay

in moves before an error takes effect, while was set high enough to ensure
rapid modification of the parameters. A couple of minor modifications to the
algorithm were made:

The raw (linear) leaf node evaluations were converted to a score
between and by computing

gen.tex; 19/01/2001; 10:19; p.10

Learning to Play Chess 11

This ensured small fluctuations in the relative values of leaf nodes did
not produce large temporal differences (the values were used in place
of in the TDLEAF() calculations). The outcome of the game

was set to 1 for a win, for a loss and for a draw. was set
to ensure that a value of was equivalent to a
material superiority of 1 pawn (initially).

The temporal differences, , were modified in the follow-
ing way. Negative values of were left unchanged as any decrease in
the evaluation from one position to the next can be viewed as mistake.
However, positive values of can occur simply because the opponent
has made a blunder. To avoid KnightCap trying to learn to predict its
opponent’s blunders, we set all positive temporal differences to zero
unless KnightCap predicted the opponent’s move .

The value of a pawn was kept fixed at its initial value so as to allow
easy interpretation of weight values as multiples of the pawn value (we
actually experimented with not fixing the pawn value and found it made
little difference: after 1764 games with an adjustable pawn its value had
fallen by less than 7 percent).

Within 300 games KnightCap’s rating had risen to 2150, an increase of
500 points in three days, and to a level comparable with human masters. At
this point KnightCap’s performance began to plateau, primarily because it
does not have an opening book and so will repeatedly play into weak lines.
We have since implemented an opening book learning algorithm and with this
KnightCap now plays at a rating of 2400–2500 (peak 2575) on the other major
Internet chess server: ICC, chessclub.com . It often beats International
Masters at blitz. Also, because KnightCap automatically learns its parameters
we have been able to add a large number of new features to its evaluation
function: KnightCap currently operates with 5872 features (1468 features in
four stages: opening, middle, ending and mating). With this extra evaluation

In a later experiment we only set positive temporal differences to zero if KnightCap did

not predict the opponent’s move and the opponent was rated less than KnightCap. After all,

predicting a stronger opponent’s blunders is a useful skill, although whether this made any

difference is not clear.
There appears to be a systematic difference of around 200–250 points between the two

servers, so a peak rating of 2575 on ICC roughly corresponds to a peak of 2350 on FICS. We

transferred KnightCap to ICC because there are more strong players playing there.
In reality there are not 1468 independent “concepts” per stage in KnightCap’s evaluation

function as many of the features come in groups of 64, one for each square on the board (like

the value of placing a rook on a particular square, for example).

gen.tex; 19/01/2001; 10:19; p.11

12 J. BAXTER, A. TRIDGELL, AND L. WEAVER

power KnightCap easily beats versions of Crafty restricted to search only as
deep as itself. However, a big caveat to all this optimistic assessment is that
KnightCap routinely gets crushed by faster programs searching more deeply.
It is quite unlikely this can be easily fixed simply by modifying the evaluation
function, since for this to work one has to be able to predict tactics statically,
something that seems very difficult to do. If one could find an effective al-
gorithm for “learning to search selectively” there would be potential for far
greater improvement.
Note that we have twice repeated the original learning experiment and

found a similar rate of improvement and final performance level. The rating
as a function of the number of games from one of these repeat runs is shown
in Figure 4 (we did not record this information in the first experiment). Note
that in this case KnightCap took nearly twice as long to reach the 2150 mark,
but this was partly because it was operating with limited memory (8Mb) until
game 500 at which point the memory was increased to 40Mb (KnightCap’s
search algorithm — MTD(f) (Plaat, Schaeffer, Pijls, & de Bruin, 1996) — is
a memory intensive variant of – and when learning KnightCap must store
the whole position in the hash table so small memory significantly impacts
upon performance). Another reason may also have been that for a portion of
the run we were performing parameter updates after every four games rather
than every game.
We also repeated the experiment using another variant of TD(), in which

the temporal differences calculated were those between the positions actually
occurring in the game, even though these positions had been selected by a
deep minimax search rather than the usual one-ply search associated with
TD(). We have dubbed this variant “TD-DIRECTED()”. With it we ob-
served a 200 point rating rise over 300 games. A significant improvement,
but much slower than TDLEAF() and a lower peak. Its performance on
backgammon is discussed in section 5.
Plots of various parameters as a function of the number of games played

are shown in Figure 5 (these plots are from the same experiment in Figure 4).
Each plot contains three graphs corresponding to the three different stages of
the evaluation function: opening, middle and ending .
Finally, we compared the performance of KnightCap with its learnt

weights to KnightCap’s performance with a set of hand-coded weights, again
by playing the two versions on ICC. The hand-coded weights were close in
performance to the learnt weights (perhaps 50-100 rating points worse). We
also tested the result of allowing KnightCap to learn starting from the hand-
coded weights, and in this case it seems that KnightCap performs better than

KnightCap actually has a fourth and final stage “mating” which kicks in when all the

pawns are off, but this stage only uses a few of the coefficients (opponent’s king mobiliity and

proximity of our king to the opponent’s king).

gen.tex; 19/01/2001; 10:19; p.12

Learning to Play Chess 13

1600

1650

1700

1750

1800

1850

1900

1950

2000

2050

2100

2150

-100 -50 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 95010001050

Ra
tin

g

Games

Figure 4. KnightCap’s rating as a function of games played (second experiment). Learning

was turned on at game 0.

when starting from just material values (peak performance was 2632 com-
pared to 2575, but these figures are very noisy). We are conducting more tests
to verify these results. However, it should not be too surprising that learning
from a good quality set of hand-crafted parameters is better than just learning
from material parameters. In particular, some of the handcrafted parameters
have very high values (the value of an “unstoppable pawn”, for example)
which can take a very long time to learn under normal playing conditions,
particularly if they are rarely active in the principal leaves. It is not yet clear
whether given a sufficient number of games this dependence on the initial
conditions can be made to vanish.

4.2. DISCUSSION

There appear to be a number of reasons for the remarkable rate at which
KnightCap improved.

1. As all the non-material weights were initially zero, even small changes in
these weights could cause very large changes in the relative ordering of
materially equal positions. Hence even after a few games KnightCap was
playing a substantially better game of chess.

gen.tex; 19/01/2001; 10:19; p.13

14 J. BAXTER, A. TRIDGELL, AND L. WEAVER

-50

0

50

100

150

200

0 50 100 150 200 250 300 350 400 450 500 550

Sc
or

e
(1

 p
aw

n
=

10
00

0)

Games

DOUBLED_PAWN

Opening
Middle
Ending

-100

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300 350 400 450 500 550

Sc
or

e
(1

 p
aw

n
=

10
00

0)

Games

CASTLE_BONUS

Opening
Middle
Ending

Figure 5. Evolution of two parameters (bonus for castling and penalty for a doubled pawn) as

a function of the number of games played. Note that each parameter appears three times: once

for each of the three stages in the evaluation function.

gen.tex; 19/01/2001; 10:19; p.14

Learning to Play Chess 15

2. It seems to be important that KnightCap started out life with intelligent
material parameters. This put it close in parameter space to many far
superior parameter settings.

3. Most players on FICS prefer to play opponents of similar strength, and so
KnightCap’s opponents improved as it did. This may have had the effect
of guiding KnightCap along a path in weight space that led to a strong set
of weights.

4. KnightCap was learning on-line, not by self-play. The advantage of on-
line play is that there is a great deal of information provided by the
opponent’s moves. In particular, against a stronger opponent KnightCap
was being shown positions that 1) could be forced (against KnightCap’s
weak play) and 2) were mis-evaluated by its evaluation function. Of
course, in self-play KnightCap can also discover positions which are
misevaluated, but it will not find the kinds of positions that are relevant
to strong play against other opponents. In this setting, one can view the
information provided by the opponent’s moves as partially solving the
“exploration” part of the exploration/exploitation tradeoff.

To further investigate the importance of some of these reasons, we
conducted several more experiments.

Good initial conditions
A second experiment was run in which KnightCap’s coefficients were all
initialised to the value of a pawn. The value of a pawn needs to be positive in
KnightCap because it is used in many other places in the code: for example
we deem the MTD search to have converged if PAWN. Thus,
to set all parameters equal to the same value, that value had to be a pawn.
Playing with the initial weight settings KnightCap had a blitz rating of

around 1250. After more than 1000 games on FICS KnightCap’s rating
has improved to about 1550, a 300 point gain. This is a much slower
improvement than the original experiment . We do not know whether
the coefficients would have eventually converged to good values, but it is
clear from this experiment that starting near to a good set of weights is
important for fast convergence. An interesting avenue for further exploration
here is the effect of on the learning rate. Because the initial evaluation
function is completely wrong, there would be some justification in setting

early on so that KnightCap only tries to predict the outcome of the

We ran this experiment three times, with the result reported being the best achieved. Since

the main experiment succeeded on all three occasions it was run, it is unlikely that the slower

ratings improvement in this experiment is due to vagaries in the training environment

gen.tex; 19/01/2001; 10:19; p.15

16 J. BAXTER, A. TRIDGELL, AND L. WEAVER

game and not the evaluations of later moves (which are extremely unreliable).

Self-play
Learning by self-play was extremely effective for TD-Gammon, but a sig-
nificant reason for this is the randomness of backgammon which ensures
that with high probability different games have substantially different se-
quences of moves, and also the speed of play of TD-Gammon which ensured
that learning could take place over several hundred-thousand games. Un-
fortunately, chess programs are slow, and chess is a deterministic game, so
self-play by a deterministic algorithm tends to result in a large number of sub-
stantially similar games. This is not a problem if the games seen in self-play
are “representative” of the games played in practice, however KnightCap’s
self-play games with only non-zero material weights are very different to the
kind of games humans of the same level would play.
To demonstrate that learning by self-play for KnightCap is not as effective

as learning against real opponents, we ran another experiment in which all but
the material parameters were initialised to zero again, but this time KnightCap
learnt by playing against itself. After 600 games (twice as many as in the
original FICS experiment), we played the resulting version against the good
version that learnt on FICS for a further 100 games with the weight values
fixed. The self-play version scored only 11% against the good FICS version.

5. Experiment with backgammon

For our backgammon experiment we were fortunate to have Mark Land
(Computer Science Department, University of California, San Diego) provide
us with the source code for his LGammon program which uses self-play and
TD() to train a backgammon playing neural network. The code has served
as both a base on which to implement TDLEAF()-based training, and as a
benchmark for measuring the success of this training.

5.1. LGAMMON

Land’s LGammon program has been implemented along the lines of
Tesauro’s TD-Gammon(Tesauro, 1992, 1994). Like Tesauro, Land uses a
raw board representation coupled with some hand-coded features, and uses
self-play based upon one-ply search to generate training data. During each
game, the positions encountered and their evaluations are recorded, with error
signals and consequent weight updates being calculated and applied after the
game.

gen.tex; 19/01/2001; 10:19; p.16

Learning to Play Chess 17

Along with the code for LGammon, Land also provided a set of weights
for the neural network. The weights are those which LGammon has used for
most of the time it has been playing on the First Internet Backgammon Server
(FIBS, fibs.com). With these weights LGammon achieved a rating on FIBS
which ranged from 1600 to 1680, significantly above the mean rating across
all players of about 1500. For convenience, we refer to the weights simply as
the FIBS weights.

5.2. EXPERIMENT WITH LGAMMON

The stochasticity inherent in backgammon complicates the implementation
of TD-DIRECTED() and TDLEAF(). Using minimax search to a depth
of one-ply with backgammon is simple, because the set of legal moves is
fully determined by the board position and the dice roll. Searching to two-
ply however, requires considering for each position reached in one-ply, the
twenty-one distinct dice rolls which could follow, and the subsequent moves
which the opponent may choose. Consequently, we have defined the two-
ply evaluation of a position in the obvious manner, using the expected value
across the dice rolls, of the positions reachable from each one-ply position.
Adapting the notation defined in section 3 such that refers to board
position subject to action , dice roll , and action , we choose action
in accordance with

argmin argmin (12)

where the expectation is with respect to the transition probabilities .
TD-DIRECTED() then stores and trains using the one-ply positions, even

though these are chosen by the two-ply search just described. Since the aver-
aging across dice rolls for depth two means there is not an explicit principal
variation, TDLEAF() approximates the leaf node with the expectation term
of equation (12) which corresponds to the branch of the game tree selected.
Similarly for the derivative of a two-ply terminal position under

TDLEAF(), we calculate the expected value of the derivative with respect
to these transition probabilities.

Limit of learning
Our experiment sought to determine whether TDLEAF() or TD-
DIRECTED() could find better weights than standard TD(). To test this, we
took two copies of the FIBS weights, the end product of a standard TD()
training run, and trained one with each of our variants and self-play.
The networks were trained for 50000 games, and check-pointed every

5000 games. To test the effectiveness of the training, the check-point net-

gen.tex; 19/01/2001; 10:19; p.17

18 J. BAXTER, A. TRIDGELL, AND L. WEAVER

works were played against the unmodified FIBS weights for 1600 games,
with both sides searching to two-ply and the match score being recorded.
The results fluctuated around parity with the FIBS weights (the result

of training with standard TD() for the duration of the training, with no
consistent or statistically significant change in relative performance being
observed.
If the optimal networks for two-ply and one-ply play are not the same, we

would expect our variants to achieve some improvement over the course of
50000 games of training. That this didn’t happen, suggests that the solution
found by standard TD(), which only searches to one-ply in training, is either
at or near the optimal for two-ply play.

6. Future work

TDLEAF() is a general method for combining search and TD(). As such, it
should be applicable to domains where search is beneficial and an evaluation
function needs to be learnt. This includes games such as othello, shogi, check-
ers, and Go. However, there are also many non-game domains requiring deep
search which may benefit from on-line learning of an evaluation function.
These include agent planning, automated theorem proving, and instruction
scheduling in optimising compilers.
We also need note of the backgammon result of section 5, which shows

that deeper searching TDLEAF() and TD-DIRECTED() don’t always im-
prove on the solution of one-step look-ahead TD(). This begs the question
of whether our variants will, in general, converge to solutions of the same
quality as TD(). Obviously domain specific characteristics can influence
this , so empirically it is impossible to prove, but a theoretical result would
be useful.
For domains where both normal TD() and TDLEAF() are feasible,

the important question of which converges faster remains open. Backgam-
mon may be an unusual case, because the branching factor, induced by the
stochasticity at each turn, is quite large and makes searching an additional
ply expensive. Thus it is possible that TD() converges faster in terms of
CPU time, though we suspect that TDLEAF() may converge faster in terms
of games played.

A chess program using only one-step look-ahead would lose most games against reason-

able quality opponents and would thus learn to value all positions as lost. This contrasts with

KnightCap whose deep search makes competing with better players possible.

gen.tex; 19/01/2001; 10:19; p.18

Learning to Play Chess 19

7. Conclusion

We have introduced TDLEAF(), a variant of TD() suitable for training
an evaluation function used in minimax search. The only extra requirement
of the algorithm is that the leaf-nodes of the principal variations be stored
throughout the game.
We presented some experiments in which a chess evaluation function

was trained from B-grade to master level using TDLEAF() by on-line play
against a mixture of human and computer opponents. The experiments show
both the importance of “on-line” sampling (as opposed to self-play) for a
deterministic game such as chess, and the need to start near a good solution
for fast convergence, although just how near is still not clear.
We also demonstrated that in the domain of backgammon, TDLEAF()

and TD-DIRECTED() were unable to improve upon a good network trained
by TD(). This suggests that the optimal network to use in 1-ply search is
close to the optimal network for 2-ply search.
KnightCap is freely available on the web from

http://wwwsyseng.anu.edu.au/lsg/knightcap.html .

Acknowledgements

Jonathan Baxter was supported by an Australian Postdoctoral Fellowship.
Lex Weaver was supported by an Australian Postgraduate Award.

Appendix

A. KNIGHTCAP

KnightCap is a reasonably sophisticated computer chess program for Unix
systems. It has all the standard algorithmic features that modern chess pro-
grams tend to have as well as a number of features that are much less
common. This section is meant to give the reader an overview of the type of
algorithms that have been chosen for KnightCap. Space limitations prevent a
full explanation of all of the described features, an interested reader should be
able find explanations in the widely available computer chess literature (see
for example (Marsland & Schaeffer, 1990)) or by examining the source code:
http://wwwsyseng.anu.edu.au/lsg.

gen.tex; 19/01/2001; 10:19; p.19

20 J. BAXTER, A. TRIDGELL, AND L. WEAVER

A.1. BOARD REPRESENTATION

This is where KnightCap differs most from other chess programs. The prin-
cipal board representation used in KnightCap is the topieces array. This is an
array of 32 bit words with one word for each square on the board. Each bit in
a word represents one of the 32 pieces in the starting chess position (8 pieces
+ 8 pawns for each side). Bit on square is set if piece is attacking square
.
The topieces array has proved to be a very powerful representation and

allows the easy description of many evaluation features which are more diffi-
cult or too costly with other representations. The array is updated dynamically
after each move in such a way that for the vast majority of moves only a small
proportion of the topieces array need be directly examined and updated.
A simple example of how the topieces array is used in KnightCap is deter-

mining whether the king is in check. Whereas an in check() function is often
quite expensive in chess programs, in KnightCap it involves just one logical
AND operation in the topieces array. In a similar fashion the evaluation func-
tion can find common features such as connected rooks using just one or two
instructions.
The topieces array is also used to drive the move generator and obviates

the need for a standard move generation function.

A.2. SEARCH ALGORITHM

The basis of the search algorithm used in KnightCap is MTD(f) (Plaat
et al., 1996). MTD(f) is a logical extension of the minimal-window alpha-
beta search that formalizes the placement of the minimal search window to
produce what is in effect a bisection search over the evaluation space.
The variation of MTD(f) that KnightCap uses includes some conver-

gence acceleration heuristics that prevent the very slow convergence that can
sometimes plague MTD(f) implementations. These heuristics are similar in
concept to the momentum terms commonly used in neural network training.
The MTD(f) search algorithm is applied within a standard iterative deep-

ening framework. The search begins with the depth obtained from the
transposition table for the initial search position and continues until a time
limit is reached in the search. Search ordering at the root node ensures that
partial ply search results obtained when the timer expires can be used quite
safely.

gen.tex; 19/01/2001; 10:19; p.20

Learning to Play Chess 21

A.3. NULL MOVES

KnightCap uses a recursive null move forward pruning technique. Whereas
most null move using chess programs use a fixed value (the number of
additional ply to prune when trying a null move) KnightCap instead uses a
variable value in an asymmetric fashion. The initial value is 3 and the
algorithm then tests the result of the null move search. If it is the computers
side of the search and the null move indicates that the position is “good” for
the computer then the value is decreased to 2 and the null move is retried.
The effect of this null move system is that most of the speed of a

system is obtained, while making no more null move defensive errors than an
system. It is essentially a pessimistic system.

A.4. SEARCH EXTENSIONS

KnightCap uses a large number of search extensions to ensure that critical
lines are searched to sufficient depth. Extensions are indicated through a
combination of factors including check, null-move mate threats, pawn moves
to the last two ranks and recapture extensions. In addition KnightCap uses a
single ply razoring system with a 0.9 pawn razoring threshold.

A.5. ASYMMETRIES

There are quite a number of asymmetric search and evaluation terms in
KnightCap, with a leaning towards pessimistic (i.e. careful) play. Apart from
the asymmetric null move and search extensions systems mentioned above,
KnightCap also uses an asymmetric system to decide what moves to try in the
quiescence search and several asymmetric evaluation terms in the evaluation
function (such as king safety and trapped piece factors).
When combined with the TDLEAF() algorithm KnightCap is able to

learn appropriate values for the asymmetric evaluation terms.

A.6. TRANSPOSITION TABLES

KnightCap uses a standard two-deep transposition table with a 128 bit
transposition table entry. Each entry holds separate depth and evaluation
information for the lower and upper bound.
The ETTC (enhanced transposition table cutoff) technique is used both

for move ordering and to reduce the tree size. The transposition table is also
used to feed the book learning system and to initialize the depth for iterative
deepening.

gen.tex; 19/01/2001; 10:19; p.21

22 J. BAXTER, A. TRIDGELL, AND L. WEAVER

A.7. MOVE ORDERING

Themove ordering system in KnightCap uses a combination of the commonly
used history (Schaeffer, 1989), killer, refutation and transposition table order-
ing techniques. With a relatively expensive evaluation function KnightCap
can afford to spend a considerable amount of CPU time on move ordering
heuristics in order to reduce the tree size.

A.8. PARALLEL SEARCH

KnightCap has been written to take advantage of parallel distributed memory
multi-computers, using a parallelism strategy that is derived naturally from
the MTD(f) search algorithm. Some details on the methodology used and
parallelism results obtained are available in (Tridgell, 1997). The results given
in this paper were obtained using a single CPU machine.

A.9. EVALUATION FUNCTION

The heart of any chess program is its evaluation function. KnightCap uses
quite a slow evaluation function that evaluates a number of computation-
ally expensive features. The evaluation function also has four distinct stages:
Opening, Middle, Ending and Mating, each with its own set of parameters
(but the same features). We have listed the names of all KnightCap’s features
in table A.9. Note that some of the features have more than one parameter as-
sociated with them, for example there are 64 parameters associated with rook
position, one for each square. These features all begin with “I”. To summa-
rize just a few of the more obscure features: IOPENING KING ADVANCE
is a bonus for the rank of the king in the opening, it has 8 parameters,
one for each rank. IMID KING ADVANCE is the same but applies in the
middle game (the fact that we have separate features for the opening and
middle games is a hangover from KnightCap’s early days when it didn’t
have separate parameters for each stage). IKING PROXIMITY is the number
of moves between our king and the opponents king. It is very useful for
forcing mates in the ending. Again there is one parameter for each of the
8 possible values. IPOS BASE is the base score for controlling each of the
squares. IPOS KINGSIDE and IPOS QUEENSIDE are modifications added
to IPOS BASE according as KnightCap is castled on the king or queen sides
respectively. The MOBILITY scores are the number of moves available to a
piece, thresholding at 10. There is a separate score for each rank the piece
is on, hence the total number of parameters of 80. The SMOBILITY scores
are the same, but now the square the piece is moving to has to be safe (i.e
controlled by KnightCap). THREAT and OPPONENTS THREAT are com-

gen.tex; 19/01/2001; 10:19; p.22

Learning to Play Chess 23

puted by doing a minimax search on the position in which only captures are
considered and each piece can move only once. Its not clear this helps the
evaluation much, but it certainly improves move ordering (the best capture
is given a high weight in the ordering). IOVERLOADED PENALTY is a
penalty that is applied to each piece for the number of otherwise hung pieces
it is defending. There is a separate penalty for each number, thresholding
at 15 (this could be done better: we should have a base score times by the
number of pieces, and have KnightCap learn the base score and a perturba-
tion on the base score for each number). IQ KING ATTACK OPPONENT
and INOQ KING ATTACK OPPONENT are bonuses for the number of
pieces KnightCap has attacking the squares around the enemy king, both
with and without queens on the board. IQ KING ATTACK COMPUTER and
INOQ KING ATTACK COMPUTER are the same thing for the opponent
attacking KnightCap’s king. Note that this asymmetry allows KnightCap the
freedom to learn to be cautious by assigning greater weight to opponent
pieces attacking its own king that it does to its own pieces attacking the
opponent’s king. It can of course also use this to be aggressive. For more
information on the features, see eval.c in KnightCap’s source code.
The most computationally expensive part of the evaluation function is the

“board control”. This function evaluates a control function for each square on
the board to try to determine who controls the square. Control of a square is
essentially defined by determining whether a player can use the square as a
flight square for a piece, or if a player controls the square with a pawn.
Despite the fact that the board control function is evaluated incremen-

tally, with the control of squares only being updated when a move affects
the square, the function typically takes around 30% of the total CPU time of
the program. This high cost is considered worthwhile because of the flow-on
effects that this calculation has on other aspects of the evaluation and search.
These flow-on effects include the ability of KnightCap to evaluate reasonably
accurately the presence of hung, trapped and immobile pieces which is nor-
mally a severe weakness in computer play. We have also noted that the more
accurate evaluation function tends to reduce the search tree size thus making
up for the decreased node count.

A.10. MODIFICATION FOR TDLEAF()

The modifications made to KnightCap for TDLEAF() affected a number of
the program’s subsystems. The largest modifications involved the parameter-
ization of the evaluation function so that all evaluation parameters became
part of a single long weight vector. All tunable evaluation knowledge could
then be described in terms of the values in this vector.
The next major modification was the addition of the full board position

in all data structures from which an evaluation value could be obtained. This

gen.tex; 19/01/2001; 10:19; p.23

24 J. BAXTER, A. TRIDGELL, AND L. WEAVER

Table I. KnightCap’s features and the number of parameters corresponding to each.

Most of the features are self-explanatory, see the text for a description of the more ob-

scure ones. Note that KnightCap’s large number of parameters is obtained by summing

all the numbers in this table and then multiplying by the number of stages (four).

Feature # Feature #

BISHOP PAIR 1 CASTLE BONUS 1

KNIGHT OUTPOST 1 BISHOP OUTPOST 1

SUPPORTED KNIGHT OUTPOST 1 SUPPORTED BISHOP OUTPOST 1

CONNECTED ROOKS 1 SEVENTH RANK ROOKS 1

OPPOSITE BISHOPS 1 EARLY QUEEN MOVEMENT 1

IOPENING KING ADVANCE 8 IMID KING ADVANCE 8

IKING PROXIMITY 8 ITRAPPED STEP 8

BLOCKED KNIGHT 1 USELESS PIECE 1

DRAW VALUE 1 NEAR DRAW VALUE 1

NO MATERIAL 1 MATING POSITION 1

IBISHOP XRAY 5 IENDING KPOS 8

IROOK POS 64 IKNIGHT POS 64

IPOS BASE 64 IPOS KINGSIDE 64

IPOS QUEENSIDE 64 IKNIGHT MOBILITY 80

IBISHOP MOBILITY 80 IROOK MOBILITY 80

IQUEEN MOBILITY 80 IKING MOBILITY 80

IKNIGHT SMOBILITY 80 IBISHOP SMOBILITY 80

IROOK SMOBILITY 80 IQUEEN SMOBILITY 80

IKING SMOBILITY 80 IPIECE VALUES 6

THREAT 1 OPPONENTS THREAT 1

IOVERLOADED PENALTY 15 IQ KING ATTACK COMPUTER 8

IQ KING ATTACK OPPONENT 8 INOQ KING ATTACK COMPUTER 8

INOQ KING ATTACK OPPONENT 8 QUEEN FILE SAFETY 1

NOQUEEN FILE SAFETY 1 IPIECE TRADE BONUS 32

IATTACK VALUE 16 IPAWN TRADE BONUS 32

UNSUPPORTED PAWN 1 ADJACENT PAWN 1

IPASSED PAWN CONTROL 21 UNSTOPPABLE PAWN 1

DOUBLED PAWN 1 WEAK PAWN 1

ODD BISHOPS PAWN POS 1 BLOCKED PASSED PAWN 1

KING PASSED PAWN SUPPORT 1 PASSED PAWN ROOK ATTACK 1

PASSED PAWN ROOK SUPPORT 1 BLOCKED DPAWN 1

BLOCKED EPAWN 1 IPAWN ADVANCE 7

IPAWN ADVANCE1 7 IPAWN ADVANCE2 7

KING PASSED PAWN DEFENCE 1 IPAWN POS 64

IPAWN DEFENCE 12 ISOLATED PAWN 1

MEGA WEAK PAWN 1 IWEAK PAWN ATTACK VALUE 8

gen.tex; 19/01/2001; 10:19; p.24

Learning to Play Chess 25

involved the substitution of a structure for the usual scalar evaluation type,
with the evaluation function filling in the evaluated position and other board
state information during each evaluation call. Similar additions were made
to the transposition table entries so that the result of a search would always
have available to it the position associated with the leaf node in the principal
variation. This significantly enlarges the transposition table and means that
to operate effectively with the MTD(f) search algorithm (itself a memory-
hungry - variant), KnightCap really needs at least 30Mb of hash table
when learning.
The only other significant modification that was required was an increase

in the bit resolution of the evaluation type so that a numerical partial deriva-
tive of the evaluation function with respect to the evaluation coefficient vector
could be obtained with reasonable accuracy.

References

Beal, D. F., & Smith, M. C. (1997). Learning Piece values Using Tem-
poral Differences. Journal of The International Computer Chess
Association.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming.
Athena Scientific.

Marsland, T. A., & Schaeffer, J. (1990). Computers, Chess and Cognition.
Springer Verlag.

Plaat, A., Schaeffer, J., Pijls, W., & de Bruin, A. (1996). Best-First Fixed-
Depth Minmax Algorithms. Artificial Intelligence, 87, 255–293.

Pollack, J., Blair, A., & Land, M. (1996). Coevolution of a Backgammon
Player. In Proceedings of the Fifth Artificial Life Conference Nara,
Japan.

Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game
of Checkers. IBM Journal of Research and Development, 3, 210–229.

Schaeffer, J. (1989). The History of Heuristic and Alpha-Beta Search En-
hancements in Practice. IEEE Transactions on Pattern Analysis and
Machine Learning, 11(11), 1203–1212.

Schraudolph, N., Dayan, P., & Sejnowski, T. (1994). Temporal Difference
Learning of Position Evaluation in the Game of Go. In Cowan, J.,
Tesauro, G., & Alspector, J. (Eds.), Advances in Neural Information
Processing Systems 6 San Fransisco. Morgan Kaufmann.

gen.tex; 19/01/2001; 10:19; p.25

26 J. BAXTER, A. TRIDGELL, AND L. WEAVER

Sutton, R. (1988). Learning to Predict by the Method of Temporal Differ-
ences. Machine Learning, 3, 9–44.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduc-
tion. MIT Press, Cambridge MA. ISBN 0-262-19398-1.

Tesauro, G. (1992). Practical Issues in Temporal Difference Learning.
Machine Learning, 8, 257–278.

Tesauro, G. (1994). TD-Gammon, a self-teaching backgammon program,
achieves master-level play. Neural Computation, 6, 215–219.

Thrun, S. (1995). Learning to Play the Game of Chess. In Tesauro, G., Touret-
zky, D., & Leen, T. (Eds.), Advances in Neural Information Processing
Systems 7 San Fransisco. Morgan Kaufmann.

Tridgell, A. (1997). KnightCap — A parallel chess program on the
AP1000+. In Proceedings of the Seventh Fujitsu Parallel Computing
Workshop Canberra, Australia. ftp://samba.anu.edu.au/tridge/knight
cap pcw97.ps.gz source code: http://wwwsysneg.anu.edu.au/lsg .

Tsitsikilis, J. N., & Roy, B. V. (1997). An Analysis of Temporal Differ-
ence Learning with Function Approximation. IEEE Transactions on
Automatic Control, 42(5), 674–690.

Walker, S., Lister, R., & Downs, T. (1993). On Self-Learning Patterns in
the Othello Board Game by the Method of Temporal Differences. In
Rowles, C., liu, H., & Foo, N. (Eds.), Proceedings of the 6th Australian
Joint Conference on Artificial Intelligence, pp. 328–333 Melbourne.
World Scientific.

gen.tex; 19/01/2001; 10:19; p.26

