
COS 402, Fall 2006

HW #6

Problem 1

Consider the following MDP:

A

a

B

b
a

Db
C

a
G

b

a

b

a
b

There are five states: A,B, C, D, and G. The reward at every state is −1, except
at G where the reward is 0. There are two actions, a and b, and the effect of
each action is deterministic as indicated in the figure. For instance, executing
a in state B leads to state A. Assume γ = 1 in this problem.

(a) Show the sequence of utility estimates Ui that would result from executing
value iteration on this MDP. Also show the optimal policy that is computed
using the final utility estimate.

(b) Show the sequence of policies πi and utility estimates Uπi that would result
from executing policy iteration on this MDP. Assume that you start with
a policy that assigns action a to every state. Note that Uπi will be infinite
for some states. Also, assume that all ties between the actions a and b in
the policy improvement step are always broken in favor of a.

(c) Generalizing this example, suppose we are given a graph with a distin-
guished node (i.e., state) G, and k edges emanating from every node corre-
sponding to k (deterministic) actions. As in this example, all of the edges
emanating from G are self-loops, the node G is assigned reward 0, and all
other nodes are assigned reward −1. In terms of properties of the graph,
what is the optimal utility function U∗, and what is the optimal policy π∗?
If value iteration is applied to this graph (viewed as an MDP), exactly how
many iterations will be needed until the algorithm converges? How about
for policy iteration?

1

Problem 2

Let B(U) and ‖·‖∞ be as defined in class. (This is the same as BU and ‖·‖
defined in Section 17.2 of R&N.) The purpose of this exercise is to prove that B
is a contraction, i.e., that ‖B(U)−B(U ′)‖∞ ≤ γ‖U−U ′‖∞. As discussed in the
book and lecture, this is the key step in showing that value iteration converges
to the right answer.

We will begin by proving some basic facts. Be sure to give genuine math-
ematical proofs for each part of this problem. Also, your proofs should use
elementary facts — in other words, do not give proofs that rely on mathemati-
cal sledge-hammers like the Cauchy-Schwartz inequality.

(a) Let u1, . . . , un and v1, . . . , vn be any sequences of real numbers. Prove that
if ui ≤ vi for all i then

max
i

ui ≤ max
i

vi

(b) Let x1, . . . , xn and y1, . . . , yn be any sequences of real numbers. Prove that(
max

i
xi

)
−

(
max

i
yi

)
≤ max

i
(xi − yi)

and also that
max

i
(xi − yi) ≤ max

i
|xi − yi|

(Hint: both of these inequalities can be proved using part (a) for an appro-
priate choice of ui and vi.)

Finally, use these facts to prove that∣∣∣∣(max
i

xi

)
−

(
max

i
yi

)∣∣∣∣ ≤ max
i

|xi − yi|

(c) Let x1, . . . , xn be any real numbers, and suppose that p1, . . . , pn are nonneg-
ative real numbers such that

∑
i pi = 1. Use the fact that |a + b| ≤ |a|+ |b|

for any real numbers a and b to prove that∣∣∣∣ ∑
i

pixi

∣∣∣∣ ≤ max
i

|xi|

(d) Now let s be any state, and let (B(U))(s) denote the value of B(U) at state
s. By plugging in the definition of B, and using the properties proved above,
prove that

|(B(U))(s) − (B(U ′))(s)| ≤ γ‖U − U ′‖∞

Conclude that

‖B(U) − B(U ′)‖∞ ≤ γ‖U − U ′‖∞

2

Problem 3

Suppose we start flipping a fair coin. What is the expected number of coin flips
until we get three heads in a row? In this problem, we will use a Markov process
formulation to solve this problem. The Markov process has six states: Four of
the states are HH, HT , TH, and TT , corresponding to the last two times that
the coin was tossed. Thus, if we last flipped tails, and the time before that we
flipped heads, then we must be in state HT . There is also a “dead” state called
D which we reach upon flipping three heads in a row for the first time. Once we
reach D, we never exit from it. Finally, the starting state is called S. Thus, we
begin in S. After flipping the coin twice, we traverse to one of the four states
HH, HT , TH, or TT , corresponding to the outcome of the two flips. Each
time the coin is flipped, we traverse to the appropriate state. For instance, if we
are in state HT , and the coin comes up tails, then we traverse to TT . Finally,
when the coin comes up heads three times in a row, we immediately traverse to
the dead state D.

(a) Formulate this problem as a Markov process (i.e., an MDP in which there
is no choice of action at each time step) in such a way that the “utility” of
every state s is equal to the expected number of coin flips until three heads
come up for a random sequence of coin flips beginning in state s. What is
the probability of transitioning from every state to every other state? What
is the “reward function” at each state?

(b) Write down Bellman-style equations for the utility at each state s in terms
of the utilities of the states that can be reached from s in one step.

(c) Solve the system of equations in part (b).

(d) Now answer the original question: What is the expected number of coin
flips until we get three heads in a row?

Problem 4

Consider the AdaBoost algorithm in Figure 1 of [1].

(a) Prove that the training error of the final classifier is

1
M

|{i : H(xi) 6= yi}| ≤
T∏

t=1

Zt.

Note that we adopt the notation of the paper: there are M training exam-
ples {(xi, yi) i = 1 . . .M}, T rounds of boosting, and Zt is defined in Eq.
4 of the paper.

3

(b) Prove that the following choice of αt minimizes the training error:

αt =
1
2

log
(

1 − εt

εt

)
,

where εt is the expected proportion of incorrect examples in round t.

Problem 5

Consider the following dataset consisting of five training examples followed by
three test examples:

x1 x2 x3 y
training

− + + −
+ + + +
− + − +
− − + −
+ + − +

test
+ − − ?
− − − ?
+ − + ?

There are three attributes (or features or dimensions), x1, x2, and x3, taking
the values + and −. The label (or class) is given in the last column denoted y;
it also takes the two values + and −.

Simulate each of the following learning algorithms on this dataset. In each
case, show the final hypothesis that is induced, and show how it was computed.
Also, say what its prediction would be on the three test examples.

Be sure to see the errata for R&N Chapter 20 below.

(a) Support vector machines. For this algorithm, you should interpret both
label and attribute values of + and − as the real numbers +1 and −1.
Also, you can use the additional information that the first three examples
are support vectors, but the others are not, so that α4 and α5 are both zero
in R&N Eq. (20.17). This means that you can maximize this equation over
α1, α2, and α3 using calculus. (Note that if any of these variables turn out
to be negative, there’s a problem.) When you have found a solution vector
w, check it by showing that yi(w · xi) ≥ 1, and that equality holds for the
support vectors, i.e., the first three examples. (The notation here is as in
class and R&N.) You do not need to use a “kernel,” just a regular inner
product, as in Eqs. (20.17) and (20.18).

(b) Perceptron. For this algorithm, use a perceptron with a single output node
and the three features at the input level. Attribute values of + and − should
be interpreted as the real numbers +1 and −1, while label values of + and

4

− should be interpreted as 1 and 0. You can disregard the “bias weight”
(denoted W0 in R&N), i.e., assume it is fixed to be zero. Assume that the
perceptron is trained for a single epoch that runs through the training data
once in the order given. Use a learning rate of α = 0.1, and start with all
weights equal to zero. For g, use the standard sigmoid function given in
Figure 20.16.

Errata for R&N Chapter 20

The paragraph describing SVMs at the very bottom of page 749 continuing at
the top of 751 is not quite correct, but some explanation is required to describe
what the problem is. In class, we implicitly required the hyperplane sought by
the SVM algorithm to pass through the origin. This resulted in a hypothesis of
the form

sign(w · x)

In other treatments of SVMs, however, the hyperplane is often not required to
pass through the origin. Thus, the computed hypothesis has the form

sign(w · x + b)

so that the hyperplane is defined both by the vector w and the scalar b.
The treatment in R&N is not quite correct for either of these cases. For

the through-the-origin case, their treatment would be correct if the constraint∑
i αiyi = 0 were omitted. With the omission of this constraint, their treatment

is the same as was presented in class. For the not-through-the-origin case, the
treatment in R&N would be correct if Eq. (20.18) were replaced by

h(x) = sign
(∑

i

αiyi(x · xi) + b

)
for some b that can be written in terms of the other variables (details omitted).
For this class (including Problem 4a above), we will only consider the through-
the-origin case.

References

[1] R. Schapire. The boosting approach to machine learning: An overview.
Nonlinear Estimation and Classification, 2003.

5

