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Graph Theory

1 Introduction

Graphs are an incredibly useful structure in Computer Science! They arise in all sorts of
applications, including scheduling, optimization, communications, and the design and
analysis of algorithms. In the next few lectures, we’ll even show how two Stanford stu-
dents used graph theory to become multibillionaires.

But first we are going to talk about something else. Namely, sex. The question that
we’ll address is, on average, who has more opposite-gender partners, men or women?1

In the popular literature, it seems that most people think the answer is “men”. Not sur-
prisingly, this has been the subject of many studies. In one of the largest, researchers from
the University of Chicago interviewed a “random sample” of 2500 people over several
years to try to get an answer to this question. Their study, published in 1994, and entitled
The Social Organization of Sexuality found that on average men have 74% more opposite-
gender partners than women.

Other studies have found that the disparity is even larger. In particular, ABC news
claims that the average man has 20 partners over his lifetime, and the average woman
has 6, for a percentage disparity of 233%. The ABC News study, aired on Primetime Live
in 2004, claimed to be one of the most scientific ever done with only a 2.5% margin of
error. It was called ”American Sex Survey: A peak between the sheets”—- hmmmmmm,
doesn’t sound so scientific. The promotion for the study is even better:

A ground breaking ABC News “Primetime Live” survey finds a range of eye-
popping sexual activities, fantasies and attitudes in this country, confirming
some conventional wisdom, exploding some myths – and venturing where
few scientific surveys have gone before.

Probably that last part about going where few scientific surveys have gone before is pretty
accurate!

Anyway, which do you think is more right, the University of Chicago or ABC News?
How would we even attempt to figure out the answer to such a question? Fortunately,
this is the kind of question that can be handled with graph theory. Whereas it might be
more interesting to interview thousands of people about their sexual practices, we can get
the answer a lot more efficiently by modelling the problem as a graph and doing a little
analysis on the graph.

1Today, we’re restricting our analysis to opposite gender partners. We’re not making a political state-
ment – it’s just a lot easier to do the analysis with graph theory this way.
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2 Graphs

Informally, a graph is a bunch of dots, some of which are connected by lines. Here is an
example of a graph:
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Sadly, this definition is not precise enough for mathematical discussion. Formally, a
graph is a pair of sets (V, E), where:

• V is a nonempty set whose elements are called vertices (or nodes).

• E is a collection of two-element subsets of V called edges.

The vertices correspond to the dots in the picture, and the edges correspond to the lines.
Thus, the dots-and-lines diagram above is a pictorial representation of the graph (V, E)
where:

V = {A, B, C,D, E, F, G, H, I}
E = {{A, B} , {A, C} , {B, D} , {C, D} , {C, E} , {E, F} , {E, G} , {H, I}} .

2.1 Definitions

A nuisance in first learning graph theory is that there are so many definitions. They all
correspond to intuitive ideas, but can take a while to absorb. Some ideas have multi-
ple names. For example, graphs are sometimes called networks, vertices are sometimes
called nodes, and edges are sometimes called arcs. Even worse, no one can agree on the
exact meanings of terms. For example, in our definition, every graph must have at least
one vertex. However, other authors permit graphs with no vertices. (The graph with
no vertices is the single, stupid counterexample to many would-be theorems— so we’re
banning it!)2 This is typical; everyone agrees more-or-less what each term means, but
disagrees about weird special cases. So do not be alarmed if definitions here differ subtly
from definitions you see elsewhere. Usually, these differences do not matter.

2 Note that we do allow graphs without edges however.
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Hereafter, we use A—B to denote an edge between vertices A and B rather than the set
notation {A, B}. Note that A—B and B—A are the same edge, just as {A, B} and {B, A}
are the same set.

Two vertices in a graph are said to be adjacent if they are joined by an edge, and an
edge is said to be incident to the vertices it joins. The number of edges incident to a vertex
is called the degree of the vertex. For example, in the graph above, A is adjacent to B and
B is adjacent to D, and the edge A—C is incident to vertices A and C. Vertex H has degree
1, D has degree 2, and E has degree 3.

Deleting some vertices or edges from a graph leaves a subgraph. Formally, a subgraph
of G = (V, E) is a graph G′ = (V ′, E ′) where V ′ is a nonempty subset of V and E ′ is a
subset of E. Since a subgraph is itself a graph, the endpoints of every edge in E ′ must be
vertices in V ′.

In the special case where we only remove edges incident to removed nodes, we say
that G′ is the subgraph induced on V ′ if E ′ = {(x—y|x, y ∈ V ′ and x—y ∈ E}. In other
words, we keep all edges unless they are incident to a node not in V ′.

Let’s restrict our attention to simple graphs: A graph is simple if it has no loops or
multiple edges. A loop is an edge that has both endpoints at the same node, i.e., an edge
of the form A—A. Multiple edges are two or more edges with the same pair of endpoints,
such as A—B and A—B. A graph with multiple edges is called a multigraph.

2.2 Sex in America

Let’s model our problem of opposite gender partners in graph theoretic terms. Let G =
(V, E) be a graph where the set of vertices V consists of everyone in America. Now each
vertex either represents either a man or a woman, so we can partition V into two subsets:
M , which contains all the male vertices, and W , which contains all the female vertices.
Let’s draw all the M vertices on the left and the W vertices on the right:

M W

Now, without getting into a lot of specifics, sometimes an edge appears between an M vertex
and a W vertex:
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M W

Actually, this is a pretty hard graph to figure out. Not only do we not know all the
edges, but the graph is enormous. If we restrict ourselves to people in the U.S., as in the
study, there are about 300 million nodes! Of this 50.8% are women and 49.2% are men. So
|V | = 300 million, |M | = 147.6 million and |W | = 152.4 million. We don’t even know how
many edges there are in this graph!

But it turns out that we don’t need to – we just need to figure out the average number
of opposite gender partnerships for men and for women. Let Am be the average number
of opposite gender partnerships for men and let Aw be the average number of opposite
gender partnerships for women. Our question to resolve is then: Does Am

Aw
= 1.74?

But how do we represent Am, Aw in terms of our graph? It’s just the average degree of
the male nodes! That is:

Am =

∑
x∈M deg(x)

|M |
=

|E|
|M |

and the average degree of the female nodes is:

Aw =

∑
x∈W deg(x)

|W |
=

|E|
|W |

.

So,
Am

Aw

=
|E|/|M |
|E|/|W |

=
|W |
|M |

= 1.0325...

So the University of Chicago study was way off. After a huge effort, all they managed
to give was a totally wrong answer. The average man has 3% more opposite gender
partnerships than the average woman and the answer really has nothing to do with any
differences in their behavior. Rather, it just has to do with the relative number of men
and women. Collectively, men and women have the same number of opposite gender
partnerships, since it takes one of each set for every partnership, but there are fewer men,
so they have a higher ratio.

As it turns out, there have been numerous other studies that have missed the same
underlying issue. For example, a couple of years ago, the Boston Globe ran a story on a
survey of the study habits of students on Boston area campuses. Their survey showed
that on average, minority students tended to study with non-minority students more
than the other way around. They went on at great length to explain why this “remarkable
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phenomenon” might be true. But it’s not remarkable at all — using our graph theory
formulation, we can see that all it says is that there are fewer minority students than
non-minority students. Well, that just follows from the definition of “minority”!

3 Coloring Graphs

In the partner example, we used the notion of an edge to denote an affinity relationship
that exists between two nodes. There are many examples in Computer Science where an
edge is used to denote just the opposite. Namely, an edge is used to represent a conflict
between two nodes. Here is such an example.

Each term, the MIT Schedules Office must assign a time slot for each final exam. This
is not easy, because some students are taking several classes with finals, and a student can
take only one test during a particular time slot. The Schedules Office wants to avoid all
conflicts. Of course, you can make such a schedule by having every exam in a different
slot, but then you would need hundreds of slots for the hundreds of courses, and the
exam period would run for so long that not only wouldn’t there be any time for vacation,
but you might never graduate! So, the schedules office would also like to to make the
exam period as short as possible.

This is an example of what is a called a graph coloring problem: Given a graph G, assign
one of k colors to each node such that adjacent nodes have different colors. In general,
a graph G is k-colorable if each vertex can be assigned one of k colors so that adjacent
vertices get different colors. The minimum value of k for which a coloring exists is the the
chromatic number χ(G) of G.

We can recast our scheduling problem as a question about coloring the vertices of a
graph. Create a vertex for each course with a final exam. Put an edge between two vertices
if some student is taking both courses. For example, suppose we need to schedule exams
for 6.041, 6.042, 6.002, 6.003 and 6.170. The scheduling graph might look like this:

6.041

6.042

6.002

6.003

6.170

6.002 and 6.042 cannot have an exam at the same time since there are students in both
courses, so there is an edge between their nodes. On the other hand, 6.042 and 6.170 can
have an exam at the same time since no student can be enrolled in both (that is, no student
should be enrolled in both this semester since they have a timing conflict). Next, identify
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each time slot with a color. For example, Monday morning is red, Monday afternoon is
blue, Tuesday morning is green, etc.

Assigning an exam to a time slot is now equivalent to coloring the corresponding ver-
tex. The main constraint is that adjacent vertices must get different colors; otherwise,
some student has two exams at the same time. Furthermore, in order to keep the exam
period short, we should try to color all the vertices using as few different colors as possi-
ble. For our example graph, three colors suffice:
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6.002

6.003

This coloring corresponds to giving one final on Monday morning (red), two Monday
afternoon (blue), and two Tuesday morning (green).

Can we use fewer than three colors? No! We can’t use only two colors since there is
a triangle in the graph – so all three vertices participating in the triangle must be colored
with different colors.

In general, trying to figure out if you can color a graph with a fixed number of colors
can take a long time. It’s a classic example of a problem for which no fast optimal algo-
rithms are known. In fact, it is easy to check if a coloring works, but it seems really hard
to find it (if you figure out how, then you can get a $1 million Clay prize). However in
some cases we can get good upper bounds on the number of colors that are needed.

For example, if k is the maximum degree of any vertex in the graph, then we can easily
find a coloring with only k + 1 colors.

Theorem 1. A graph with maximum degree at most k is (k + 1)-colorable.

Unfortunately, if you try induction on k, it will lead to disaster. It is not that it is
impossible, just that it is extremely painful and would kill you if you tried it on an exam.
So, be sure to consider alternatives if you are looking too hard. We already saw that it can
help to assume a stronger induction hypothesis. Another option, especially with graphs,
is to change what you are inducting on. In graphs, some good choices are n, the number
of nodes, or e, the number of edges.

Proof. We use induction on the number of vertices in the graph, which we denote by n.
Let P (n) be the proposition that an n-vertex graph with maximum degree at most k is
(k + 1)-colorable. A 1-vertex graph has maximum degree 0 and is 1-colorable, so P (1) is
true.



Graph Theory 7

Now assume that P (n) is true, and let G be an (n + 1)-vertex graph with maximum
degree at most k. Remove a vertex v, leaving an n-vertex graph G′. Note that G′ is the
subgraph induced on V − {v}. The maximum degree of G′ is at most k, and so G′ is
(k + 1)-colorable by our assumption P (n). Now add back vertex v. We can assign v a
color different from all adjacent vertices, since v has degree at most k and k + 1 colors are
available. Therefore, G is (k + 1)-colorable. The theorem follows by induction.

Sometimes k + 1 colors is the best you can do. Consider a graph on n nodes with all
possible edges, so d = n − 1. This is called the complete graph Kn or a clique, just like a
clique of friends, where nodes represent the people and an edge represents the friendship
relationship.3

Sometimes k + 1 colors is far from the best that you can do. Consider the n-node star,
where the node with the maximum degree has degree n− 1. The star only needs 2 colors!

4 Why coloring?

Coloring problems come up in all sorts of applications. For example, at Akamai, a new
version of software is deployed over each of 20,000 servers every few days. The updates
cannot be done at the same time since the servers need to be taken down in order to
deploy the software. Also, the servers cannot be handled one at a time, since it would
take forever to update them all (each one takes about an hour). Moreover, certain pairs of

3 When speaking of friends, clique is usually pronounced similar to click. However, for some reason,
graph theorists think that the word clique rhymes with geek.
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servers cannot be taken down at the same time since they have common critical functions.
This problem was eventually solved by making a 20,000 node conflict graph and coloring
it with 8 colors – so only 8 waves of install are needed!

At a much smaller scale, the same problem exists with register allocation for variables.
Each variable needs to be assigned to a register, but you can’t have variables that are
active at the same time assigned to the same register. So, the number of colors tells us
how many registers are needed.

A very famous example of graph coloring is the map coloring problem. In this case,
a country or state on a map corresponds to a node and an edge joins two nodes if the
corresponding territories on the map share a border. The question is how many colors are
needed so that adjacent territories get different colors (if you colored adjacent territories
with the same color, how would you be able to tell that they are different territories?). As
we mentioned in the first lecture, ultimately, in a very famous result, namely the 4 color
theorem, it was shown that 4 colors suffice. If we have time, in recitation, you’ll show the
6 color theorem.

The last example that we’ll mention of a graph coloring application arises in commu-
nication graphs. In this problem, we need to assign frequencies to radio stations. If two
stations have an overlap in their broadcast area, they can’t be given the same frequency.
Frequencies are precious and hence an expensive commodity and so you want to mini-
mize the number handed out.

5 Graph theory and communications

We just saw that graph theory comes up in communications problems. In our last ex-
ample, an edge between to nodes was used to denote a conflict. In the more typical
communication problem, an edge between to nodes is used to denote the presence of a
communications channel between two end points. The Internet is one eample of such a
network, where the nodes correspond to routers (or hubs) and edges correspond to wires
or fiber between pairs of routers.

Here is an example of a communications graph:

x1

x2
x3 x4

x5
x6x7

x8

x9

x10
x11

This network has 11 switches and 12 wires. It doesn’t exactly look like the Internet, but
it might represent a typical architecture of a single corporate network. The first strange
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feature that might pop out at you is that it is not even connected! This could be a little
problematic... there is no way for nodes x1, . . . , x8 to communicate with nodes x9, x10, x11.
Is this why American productivity isn’t increasing at the rate we had hoped for lately?
Well, actually, this might be by design. Today some military networks are not allowed
to connect to the Internet or other government networks, for fear of being attacked by
viruses and worms that might spread through connections. We are able to formalize the
notion of being able to communicate in the graph by the notion of a path.

A path in a graph G = (V, E) is a sequence of distinct nodes x1, x2, . . . , xk such that each
of x1—x2, x2—x3, . . . xk−1—xk ∈ E. For example, x8, x7, x6, x3, x4 is a path from x8 to x4.

For this class, we’ll assume that all the nodes in a path are distinct, but not all texts
require this. We’ll use the term walk to refer to paths with repeated nodes – i.e., a walk is
the same as a path except that you can repeat nodes and edges as you move through the
graph. So any path is a walk. But x8, x7, x6, x3, x7, x6 is a walk which is not a path.

We then say that a graph G = (V, E) is connected if for all pairs of nodes xi, xj ∈ V ,
there is a path from xi to xj in G.

The graph shown here is not connected since, for example, there is no path from x5 to
x9. But it does have two connected components – that is, it consists of two subgraphs that
are themselves connected.

A connected component of G is a maximal connected subgraph of G. Maximal means that
you can’t add any nodes or edges to the subgraph without making it be disconnected. For
example, x9, x10, x11 is a connected component above. But, x1, . . . , x7 is not, since you can
add x8 and still stay connected.

Here is a false proof about connectivity. It exposes a very common flaw made on proofs
by induction on graphs – it even has a name – it is known as “build-up error”.

False Claim. If every vertex in a graph has degee at least 1, then the graph is connected.

There are many counterexamples; here is one:

Since the claim is false, there must be at least one error in the following “proof”.

Proof. We use induction. Let P (n) be the proposition that if every vertex in an n-vertex
graph has degree at least 1, then the graph is connected.

Base case: There is only one graph with a single vertex and it has degree 0. Therefore, P (1)
is vacuously true, since the if-part is false.

Inductive step: We must show that P (n) implies P (n+1) for all n ≥ 1. Consider an n-vertex
graph in which every vertex has degree at least 1. By the assumption P (n), this graph is
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connected; that is, there is a path between every pair of vertices. Now we add one more
vertex x to obtain an (n + 1)-vertex graph:

z

y

X

n − vertex graph

All that remains is to check that there is a path from x to every other vertex z. Since x
has degree at least one, there is an edge from x to some other vertex; call it y. Thus, we
can obtain a path from x to z by adjoining the edge x—y to the path from y to z. This
proves P (n + 1).

By the principle of induction P (n) is true for all n ≥ 1, which proves the theorem.

That looks fine! Where is the bug? It turns out that faulty assumption underlying
this argument is that every (n + 1)-vertex graph with minimum degree 1 can be obtained from
an n-vertex graph with minimum degree 1 by adding 1 more vertex. Instead of starting by
considering an arbitrary (n + 1)- node graph, this proof only considered an (n + 1)-node
graph that you can make by starting with an n-node graph with minimum degree 1.

The counterexample above shows that this assumption is false; there is no way to build
that 4-vertex graph from a 3-vertex graph with minimum degree 1. Thus the first error in
the proof is the statement “This proves P (n + 1)”.

More generally, this is an example of “build-up error”. Generally, this arises from a
faulty assumption that every size n + 1 graph with some property can be “built up” from
a size n graph with the same property. (This assumption is correct for some properties,
but incorrect for others— such as the one in the argument above.)

One way to avoid an accidental build-up error is to use a “shrink down, grow back”
process in the inductive step: start with a size n + 1 graph, remove a vertex (or edge),
apply the inductive hypothesis P (n) to the smaller graph, and then add back the vertex
(or edge) and argue that P (n + 1) holds. Let’s see what would have happened if we’d
tried to prove the claim above by this method:

Inductive step: We must show that P (n) implies P (n+1) for all n ≥ 1. Consider an (n+1)-
vertex graph G in which every vertex has degree at least 1. Remove an arbitrary vertex v,
leaving an n-vertex graph G′ in which every vertex has degree... uh-oh!

The reduced graph G′ might contain a vertex of degree 0, making the inductive hy-
pothesis P (n) inapplicable! We are stuck— and properly so, since the claim is false!
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